File size: 4,408 Bytes
7a08283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
library_name: transformers
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML
tags:
- generated_from_trainer
model-index:
- name: outputs/out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
    type: sharegpt
    conversation: chatml
  - path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered
    type: sharegpt
    conversation: chatml
  - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    type: sharegpt
    conversation: chatml
  - path: NewEden/Gryphe-Sonnet-3.5-35k-Subset
    type: sharegpt
    conversation: chatml
  - path: Nitral-AI/Reasoning-1shot_ShareGPT
    type: sharegpt
    conversation: chatml
  - path: Nitral-AI/GU_Instruct-ShareGPT
    type: sharegpt
    conversation: chatml
  - path: Nitral-AI/Medical_Instruct-ShareGPT
    type: sharegpt
    conversation: chatml
  - path: AquaV/Resistance-Sharegpt
    type: sharegpt
    conversation: chatml
  - path: AquaV/US-Army-Survival-Sharegpt
    type: sharegpt
    conversation: chatml
  - path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
    type: sharegpt
    conversation: chatml

chat_template: chatml

val_set_size: 0.002
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: mini8B
wandb_entity:
wandb_watch:
wandb_name: mini8B
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2

debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:

special_tokens:
  pad_token: <pad>

```

</details><br>

# outputs/out

This model is a fine-tuned version of [Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML](https://huggingface.co/Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5341

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 91
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2548        | 0.0022 | 1    | 2.0884          |
| 0.7712        | 0.2503 | 114  | 1.6165          |
| 0.7566        | 0.5005 | 228  | 1.5734          |
| 0.7241        | 0.7508 | 342  | 1.5579          |
| 0.6994        | 1.0011 | 456  | 1.5401          |
| 0.6186        | 1.2499 | 570  | 1.5433          |
| 0.6102        | 1.5003 | 684  | 1.5366          |
| 0.5926        | 1.7507 | 798  | 1.5341          |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1