File size: 2,826 Bytes
65743a6 6464326 83074ed 2aa9ee7 734e51c 2aa9ee7 83074ed 6464326 83074ed 65743a6 2aa9ee7 58afc80 2aa9ee7 5207533 2aa9ee7 25e2b57 2aa9ee7 cf75e58 2aa9ee7 25e2b57 863178e a6dda92 2aa9ee7 5a11720 b130037 cf75e58 b130037 aa0cc44 e0e11e3 b130037 2aa9ee7 da148a5 83294ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: cc-by-4.0
datasets:
- FredZhang7/malicious-website-features-2.4M
wget:
- text: https://chat.openai.com/
- text: https://huggingface.co/FredZhang7/aivance-safesearch-v3
metrics:
- accuracy
language:
- af
- en
- et
- sw
- sv
- sq
- de
- ca
- hu
- da
- tl
- so
- fi
- fr
- cs
- hr
- cy
- es
- sl
- tr
- pl
- pt
- nl
- id
- sk
- lt
- 'no'
- lv
- vi
- it
- ro
- ru
- mk
- bg
- th
- ja
- ko
- multilingual
---
I'm releasing this model because v2 has made too many significant improvements in terms of dataset size, features, efficiency, robustness of feature extraction, and thoroughness that it makes v1 look too simple.
The classification task for v1 is split into two stages:
1. URL features model
- **96.5%+ accurate** on training and validation data
- 2,436,727 rows of labelled URLs
- evaluation from v2: slightly overfitted, by perhaps around 0.8%
2. Website features model
- **98.4% accurate** on training data, and **98.9% accurate** on validation data
- 911,180 rows of 42 features
- evaluation from v2: slightly biased towards the URL feature (bert_confidence) model more than the other columns
## Training
I applied cross-validation with `cv=5` to the training dataset to search for the best hyperparameters.
Here's the dict passed to `sklearn`'s '`GridSearchCV` function:
```python
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'boosting_type': ['gbdt', 'dart'],
'num_leaves': [15, 23, 31, 63],
'learning_rate': [0.001, 0.002, 0.01, 0.02],
'feature_fraction': [0.5, 0.6, 0.7, 0.9],
'early_stopping_rounds': [10, 20],
'num_boost_round': [500, 750, 800, 900, 1000, 1250, 2000]
}
```
To reproduce the 98.4% accurate model, you can follow the data analysis on the [dataset page](https://huggingface.co/datasets/FredZhang7/malicious-website-features-2.4M) to filter out the unimportant features.
Then train a LightGBM model using the most suited hyperparamters for this task:
```python
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'boosting_type': 'gbdt',
'num_leaves': 31,
'learning_rate': 0.01,
'feature_fraction': 0.6,
'early_stopping_rounds': 10,
'num_boost_round': 800
}
```
## URL Features
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("FredZhang7/malware-phisher")
model = AutoModelForSequenceClassification.from_pretrained("FredZhang7/malware-phisher")
```
## Website Features
```bash
pip install lightgbm
```
```python
import lightgbm as lgb
lgb.Booster(model_file="phishing_model_combined_0.984_train.txt")
```
## Attribution
- If you distribute, remix, adapt, or build upon our work, please credit "AIstrova Technologies Inc." in your README.md, application description, research, or website. |