Text Generation
Transformers
Safetensors
English
llava_phi
custom_code
ALLaVA-3B-Longer / modeling_llava_phi.py
g-h-chen's picture
upload modeling_llava_phi.py
5f6f886 verified
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import math
import pdb
from typing import Dict, Any
from PIL import Image
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation.utils import GenerationConfig
import sys
from .modeling_phi import PhiForCausalLM, PhiModel, PhiConfig
from .generation_utils import build_allava_input
################ Phi ###############################
class LlavaPhiConfig(PhiConfig):
model_type = "llava_phi"
class LlavaPhiModel(LlavaMetaModel, PhiModel):
config_class = LlavaPhiConfig
def __init__(self, config: PhiConfig):
super(LlavaPhiModel, self).__init__(config)
class LlavaPhiForCausalLM(PhiForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaPhiConfig
def __init__(self, config, init_vision_encoder_from_ckpt=True):
# note that the default value is set to True for this inference version. In training `init_vision_encoder_from_ckpt` is default to be True.
config._attn_implementation = "flash_attention_2"
super(PhiForCausalLM, self).__init__(config)
# self.model is used in LlavaMetaForCausalLM.get_model(); self.transformer is used in PhiForCausalLM.forward()
self.model = LlavaPhiModel(config)
if hasattr(self.model, '_use_flash_attention_2'):
assert self.model._use_flash_attention_2, 'flash attn is not enabled. check it out!'
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
if init_vision_encoder_from_ckpt:
vision_tower = self.get_vision_tower()
print(f'loading from CLIP first. This should only be used at inference!!!')
vision_tower.load_model() #
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_tokenizer(self):
return self.tokenizer
def get_processor(self):
return self.model.vision_tower.image_processor
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
# ) = self.prepare_inputs_labels_for_multimodal(
) = self.prepare_inputs_labels_for_multimodal_new(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images
)
# pdb.set_trace()
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs):
'''
This function is called for each token at inference
'''
# pdb.set_trace()
images = kwargs.pop("images", None)
####################################################
# lines from modeling_phi.py
####################################################
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif past_length >= input_ids.shape[1]:
input_ids = input_ids[:, [-1]] # only keep the last one!
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
####################################################
# end of lines from modeling_phi.py
####################################################
if images is not None:
model_inputs['images'] = images
return model_inputs
def chat(
self,
texts: Optional[str | list[list[str, str]]],
images: Optional[str | list[str]] = None,
history: Optional[list[str]] = None,
stream = False,
return_history = False,
**kwargs
):
'''
texts: if `str`, then generate for a single round; if list[dict],
images: str (optional), local path to an image.
'''
use_cache = kwargs.pop('use_cache', True)
############################
# merge history
############################
input_ids, image_tensors, history = build_allava_input(
tokenizer = self.get_tokenizer(),
processor = self.get_processor(),
texts = texts,
images = images,
history=history,
return_history=return_history,
device = self.device
)
############################
# generate response
############################
# with torch.autocast(device_type='cuda'):
if 'cuda' in str(self.device):
device_type = 'cuda'
else:
device_type = 'cpu'
with torch.autocast(device_type=device_type, dtype=self.dtype):
output_ids = self.generate(
inputs=input_ids,
images=image_tensors,
use_cache=use_cache,
**kwargs)
answer = self.get_tokenizer().decode(output_ids[0, input_ids.shape[1]:], skip_special_tokens=True).strip()
if return_history:
history[-1][-1] = answer
return answer, history
return answer
AutoConfig.register("llava_phi", LlavaPhiConfig)
AutoModelForCausalLM.register(LlavaPhiConfig, LlavaPhiForCausalLM)