|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.456 recall_macro: 0.333 precision_macro: 0.152 f1_macro: 0.209 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.456 recall_macro: 0.333 precision_macro: 0.152 f1_macro: 0.209 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.456 recall_macro: 0.333 precision_macro: 0.152 f1_macro: 0.209 |
|
Running MultinomialNB() |
|
accuracy: 0.456 recall_macro: 0.333 precision_macro: 0.152 f1_macro: 0.209 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.354 recall_macro: 0.345 precision_macro: 0.226 f1_macro: 0.268 |
|
=== new best DecisionTreeClassifier(class_weight='balanced', max_depth=1) (using recall_macro): |
|
accuracy: 0.354 recall_macro: 0.345 precision_macro: 0.226 f1_macro: 0.268 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.360 recall_macro: 0.352 precision_macro: 0.352 f1_macro: 0.339 |
|
=== new best DecisionTreeClassifier(class_weight='balanced', max_depth=5) (using recall_macro): |
|
accuracy: 0.360 recall_macro: 0.352 precision_macro: 0.352 f1_macro: 0.339 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.245 recall_macro: 0.333 precision_macro: 0.082 f1_macro: 0.131 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.361 recall_macro: 0.353 precision_macro: 0.241 f1_macro: 0.278 |
|
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.361 recall_macro: 0.353 precision_macro: 0.241 f1_macro: 0.278 |
|
|
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 0.361 recall_macro: 0.353 precision_macro: 0.241 f1_macro: 0.278 |
|
|
|
Best model: |
|
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.361 recall_macro: 0.353 precision_macro: 0.241 f1_macro: 0.278 |
|
|