--- base_model: openai/whisper-small datasets: - common_voice_13_0 library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-small-Cantonese-test results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: zh-HK split: test args: zh-HK metrics: - type: wer value: 71.49724051985046 name: Wer --- # whisper-small-Cantonese-test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3400 - Wer: 71.4972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5135 | 0.1140 | 100 | 0.4197 | 78.8143 | | 0.4537 | 0.2281 | 200 | 0.3400 | 71.4972 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1