test
Browse files- README.md +220 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +419 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: microsoft/phi-1_5
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
## Training procedure
|
203 |
+
|
204 |
+
|
205 |
+
The following `bitsandbytes` quantization config was used during training:
|
206 |
+
- quant_method: bitsandbytes
|
207 |
+
- load_in_8bit: True
|
208 |
+
- load_in_4bit: False
|
209 |
+
- llm_int8_threshold: 6.0
|
210 |
+
- llm_int8_skip_modules: None
|
211 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
212 |
+
- llm_int8_has_fp16_weight: False
|
213 |
+
- bnb_4bit_quant_type: fp4
|
214 |
+
- bnb_4bit_use_double_quant: False
|
215 |
+
- bnb_4bit_compute_dtype: float32
|
216 |
+
|
217 |
+
### Framework versions
|
218 |
+
|
219 |
+
|
220 |
+
- PEFT 0.6.2
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
|
3 |
+
size 48
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ecf16415dbb878d4224f58533a271f3d37bbb47bb8e2409e9eef0d3ced4390
|
3 |
+
size 37829690
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eb35b3d837d79632aedb5fff9f2929a3e6cbceeb2c50a27bf143f39407bf424
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee665d99b8d4ac37b6829a57abd01a01763b04846f27bc645d525d70173d6821
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.18099547511312217,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 2.9999999999999997e-05,
|
14 |
+
"loss": 2.4375,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 5.9999999999999995e-05,
|
20 |
+
"loss": 2.5231,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"eval_loss": 2.4237778186798096,
|
26 |
+
"eval_runtime": 171.986,
|
27 |
+
"eval_samples_per_second": 45.69,
|
28 |
+
"eval_steps_per_second": 5.716,
|
29 |
+
"step": 20
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.01,
|
33 |
+
"learning_rate": 8.999999999999999e-05,
|
34 |
+
"loss": 2.3284,
|
35 |
+
"step": 30
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"epoch": 0.02,
|
39 |
+
"learning_rate": 0.00011999999999999999,
|
40 |
+
"loss": 1.8222,
|
41 |
+
"step": 40
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.02,
|
45 |
+
"eval_loss": 1.525316596031189,
|
46 |
+
"eval_runtime": 172.7335,
|
47 |
+
"eval_samples_per_second": 45.492,
|
48 |
+
"eval_steps_per_second": 5.691,
|
49 |
+
"step": 40
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.02,
|
53 |
+
"learning_rate": 0.00015,
|
54 |
+
"loss": 1.025,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.03,
|
59 |
+
"learning_rate": 0.00017999999999999998,
|
60 |
+
"loss": 1.0834,
|
61 |
+
"step": 60
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.03,
|
65 |
+
"eval_loss": 0.8071926832199097,
|
66 |
+
"eval_runtime": 172.0838,
|
67 |
+
"eval_samples_per_second": 45.664,
|
68 |
+
"eval_steps_per_second": 5.712,
|
69 |
+
"step": 60
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.03,
|
73 |
+
"learning_rate": 0.00020999999999999998,
|
74 |
+
"loss": 0.8541,
|
75 |
+
"step": 70
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.04,
|
79 |
+
"learning_rate": 0.00023999999999999998,
|
80 |
+
"loss": 0.7104,
|
81 |
+
"step": 80
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.04,
|
85 |
+
"eval_loss": 0.7147021889686584,
|
86 |
+
"eval_runtime": 172.8542,
|
87 |
+
"eval_samples_per_second": 45.46,
|
88 |
+
"eval_steps_per_second": 5.687,
|
89 |
+
"step": 80
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.04,
|
93 |
+
"learning_rate": 0.00027,
|
94 |
+
"loss": 0.6001,
|
95 |
+
"step": 90
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.05,
|
99 |
+
"learning_rate": 0.0003,
|
100 |
+
"loss": 0.4885,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05,
|
105 |
+
"eval_loss": 0.70524662733078,
|
106 |
+
"eval_runtime": 172.2659,
|
107 |
+
"eval_samples_per_second": 45.616,
|
108 |
+
"eval_steps_per_second": 5.706,
|
109 |
+
"step": 100
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.05,
|
113 |
+
"learning_rate": 0.00029,
|
114 |
+
"loss": 0.9048,
|
115 |
+
"step": 110
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.05,
|
119 |
+
"learning_rate": 0.00028,
|
120 |
+
"loss": 0.7366,
|
121 |
+
"step": 120
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.05,
|
125 |
+
"eval_loss": 0.6695398688316345,
|
126 |
+
"eval_runtime": 172.5803,
|
127 |
+
"eval_samples_per_second": 45.532,
|
128 |
+
"eval_steps_per_second": 5.696,
|
129 |
+
"step": 120
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06,
|
133 |
+
"learning_rate": 0.00027,
|
134 |
+
"loss": 0.6551,
|
135 |
+
"step": 130
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.06,
|
139 |
+
"learning_rate": 0.00026,
|
140 |
+
"loss": 0.5573,
|
141 |
+
"step": 140
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.06,
|
145 |
+
"eval_loss": 0.6578989624977112,
|
146 |
+
"eval_runtime": 172.8835,
|
147 |
+
"eval_samples_per_second": 45.453,
|
148 |
+
"eval_steps_per_second": 5.686,
|
149 |
+
"step": 140
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.07,
|
153 |
+
"learning_rate": 0.00025,
|
154 |
+
"loss": 0.4508,
|
155 |
+
"step": 150
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.07,
|
159 |
+
"learning_rate": 0.00023999999999999998,
|
160 |
+
"loss": 0.8456,
|
161 |
+
"step": 160
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.07,
|
165 |
+
"eval_loss": 0.6626420021057129,
|
166 |
+
"eval_runtime": 172.8197,
|
167 |
+
"eval_samples_per_second": 45.469,
|
168 |
+
"eval_steps_per_second": 5.688,
|
169 |
+
"step": 160
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.08,
|
173 |
+
"learning_rate": 0.00023,
|
174 |
+
"loss": 0.7237,
|
175 |
+
"step": 170
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.08,
|
179 |
+
"learning_rate": 0.00021999999999999995,
|
180 |
+
"loss": 0.6205,
|
181 |
+
"step": 180
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.08,
|
185 |
+
"eval_loss": 0.63532555103302,
|
186 |
+
"eval_runtime": 172.3005,
|
187 |
+
"eval_samples_per_second": 45.606,
|
188 |
+
"eval_steps_per_second": 5.705,
|
189 |
+
"step": 180
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.09,
|
193 |
+
"learning_rate": 0.00020999999999999998,
|
194 |
+
"loss": 0.5346,
|
195 |
+
"step": 190
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.09,
|
199 |
+
"learning_rate": 0.00019999999999999998,
|
200 |
+
"loss": 0.4467,
|
201 |
+
"step": 200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.09,
|
205 |
+
"eval_loss": 0.6415661573410034,
|
206 |
+
"eval_runtime": 172.5689,
|
207 |
+
"eval_samples_per_second": 45.535,
|
208 |
+
"eval_steps_per_second": 5.696,
|
209 |
+
"step": 200
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.1,
|
213 |
+
"learning_rate": 0.00018999999999999998,
|
214 |
+
"loss": 0.8274,
|
215 |
+
"step": 210
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.1,
|
219 |
+
"learning_rate": 0.00017999999999999998,
|
220 |
+
"loss": 0.689,
|
221 |
+
"step": 220
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.1,
|
225 |
+
"eval_loss": 0.6247297525405884,
|
226 |
+
"eval_runtime": 172.7326,
|
227 |
+
"eval_samples_per_second": 45.492,
|
228 |
+
"eval_steps_per_second": 5.691,
|
229 |
+
"step": 220
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.1,
|
233 |
+
"learning_rate": 0.00016999999999999999,
|
234 |
+
"loss": 0.6195,
|
235 |
+
"step": 230
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.11,
|
239 |
+
"learning_rate": 0.00015999999999999999,
|
240 |
+
"loss": 0.5187,
|
241 |
+
"step": 240
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.11,
|
245 |
+
"eval_loss": 0.6187988519668579,
|
246 |
+
"eval_runtime": 172.5129,
|
247 |
+
"eval_samples_per_second": 45.55,
|
248 |
+
"eval_steps_per_second": 5.698,
|
249 |
+
"step": 240
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.11,
|
253 |
+
"learning_rate": 0.00015,
|
254 |
+
"loss": 0.4326,
|
255 |
+
"step": 250
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.12,
|
259 |
+
"learning_rate": 0.00014,
|
260 |
+
"loss": 0.8144,
|
261 |
+
"step": 260
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.12,
|
265 |
+
"eval_loss": 0.6190418004989624,
|
266 |
+
"eval_runtime": 173.1094,
|
267 |
+
"eval_samples_per_second": 45.393,
|
268 |
+
"eval_steps_per_second": 5.678,
|
269 |
+
"step": 260
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.12,
|
273 |
+
"learning_rate": 0.00013,
|
274 |
+
"loss": 0.6642,
|
275 |
+
"step": 270
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.13,
|
279 |
+
"learning_rate": 0.00011999999999999999,
|
280 |
+
"loss": 0.5946,
|
281 |
+
"step": 280
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.13,
|
285 |
+
"eval_loss": 0.6081172227859497,
|
286 |
+
"eval_runtime": 172.463,
|
287 |
+
"eval_samples_per_second": 45.563,
|
288 |
+
"eval_steps_per_second": 5.7,
|
289 |
+
"step": 280
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.13,
|
293 |
+
"learning_rate": 0.00010999999999999998,
|
294 |
+
"loss": 0.515,
|
295 |
+
"step": 290
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.14,
|
299 |
+
"learning_rate": 9.999999999999999e-05,
|
300 |
+
"loss": 0.4127,
|
301 |
+
"step": 300
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.14,
|
305 |
+
"eval_loss": 0.622405469417572,
|
306 |
+
"eval_runtime": 172.9603,
|
307 |
+
"eval_samples_per_second": 45.432,
|
308 |
+
"eval_steps_per_second": 5.683,
|
309 |
+
"step": 300
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.14,
|
313 |
+
"learning_rate": 8.999999999999999e-05,
|
314 |
+
"loss": 0.8053,
|
315 |
+
"step": 310
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.14,
|
319 |
+
"learning_rate": 7.999999999999999e-05,
|
320 |
+
"loss": 0.6842,
|
321 |
+
"step": 320
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.14,
|
325 |
+
"eval_loss": 0.6062848567962646,
|
326 |
+
"eval_runtime": 172.4692,
|
327 |
+
"eval_samples_per_second": 45.562,
|
328 |
+
"eval_steps_per_second": 5.7,
|
329 |
+
"step": 320
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.15,
|
333 |
+
"learning_rate": 7e-05,
|
334 |
+
"loss": 0.5868,
|
335 |
+
"step": 330
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.15,
|
339 |
+
"learning_rate": 5.9999999999999995e-05,
|
340 |
+
"loss": 0.5091,
|
341 |
+
"step": 340
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.15,
|
345 |
+
"eval_loss": 0.6016470193862915,
|
346 |
+
"eval_runtime": 172.4602,
|
347 |
+
"eval_samples_per_second": 45.564,
|
348 |
+
"eval_steps_per_second": 5.7,
|
349 |
+
"step": 340
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.16,
|
353 |
+
"learning_rate": 4.9999999999999996e-05,
|
354 |
+
"loss": 0.4201,
|
355 |
+
"step": 350
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.16,
|
359 |
+
"learning_rate": 3.9999999999999996e-05,
|
360 |
+
"loss": 0.7834,
|
361 |
+
"step": 360
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.16,
|
365 |
+
"eval_loss": 0.6014373302459717,
|
366 |
+
"eval_runtime": 172.2045,
|
367 |
+
"eval_samples_per_second": 45.632,
|
368 |
+
"eval_steps_per_second": 5.708,
|
369 |
+
"step": 360
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.17,
|
373 |
+
"learning_rate": 2.9999999999999997e-05,
|
374 |
+
"loss": 0.6635,
|
375 |
+
"step": 370
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.17,
|
379 |
+
"learning_rate": 1.9999999999999998e-05,
|
380 |
+
"loss": 0.5875,
|
381 |
+
"step": 380
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.17,
|
385 |
+
"eval_loss": 0.5969696044921875,
|
386 |
+
"eval_runtime": 172.1021,
|
387 |
+
"eval_samples_per_second": 45.659,
|
388 |
+
"eval_steps_per_second": 5.712,
|
389 |
+
"step": 380
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.18,
|
393 |
+
"learning_rate": 9.999999999999999e-06,
|
394 |
+
"loss": 0.4966,
|
395 |
+
"step": 390
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.18,
|
399 |
+
"learning_rate": 0.0,
|
400 |
+
"loss": 0.4273,
|
401 |
+
"step": 400
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.18,
|
405 |
+
"eval_loss": 0.5965555906295776,
|
406 |
+
"eval_runtime": 172.4595,
|
407 |
+
"eval_samples_per_second": 45.564,
|
408 |
+
"eval_steps_per_second": 5.7,
|
409 |
+
"step": 400
|
410 |
+
}
|
411 |
+
],
|
412 |
+
"logging_steps": 10,
|
413 |
+
"max_steps": 400,
|
414 |
+
"num_train_epochs": 1,
|
415 |
+
"save_steps": 20,
|
416 |
+
"total_flos": 1.346139374616576e+16,
|
417 |
+
"trial_name": null,
|
418 |
+
"trial_params": null
|
419 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14414b5b5c958f41182877067baf415d391eb6c3646ab0774b3e5ce23b8178e8
|
3 |
+
size 4600
|