File size: 7,036 Bytes
f5723ce 7fa8ef3 f5723ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
license: apache-2.0
language:
- en
- es
- it
- de
- fr
---
I have no idea what I’m doing… if this causes the apocalypse someone please let me know.
For the bold, the brave, the reckless, the rich, and the criminally insane, I present…
Mixtral-8x22B-Instruct-v0.1 8.0bpw h8 EXL2
Includes [measurement.json](https://huggingface.co/FuturisticVibes/Mixtral-8x22B-Instruct-v0.1-8.0bpw-h8-exl2/tree/measurement) file for further quantization
This is the last of the BIG Mixtrals... This cost so much money...
Original Model: https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
# Original Model Card
# Model Card for Mixtral-8x22B-Instruct-v0.1
The Mixtral-8x22B-Instruct-v0.1 Large Language Model (LLM) is an instruct fine-tuned version of the [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1).
## Run the model
```python
from transformers import AutoModelForCausalLM
from mistral_common.protocol.instruct.messages import (
AssistantMessage,
UserMessage,
)
from mistral_common.protocol.instruct.tool_calls import (
Tool,
Function,
)
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
device = "cuda" # the device to load the model onto
tokenizer_v3 = MistralTokenizer.v3()
mistral_query = ChatCompletionRequest(
tools=[
Tool(
function=Function(
name="get_current_weather",
description="Get the current weather",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
)
)
],
messages=[
UserMessage(content="What's the weather like today in Paris"),
],
model="test",
)
encodeds = tokenizer_v3.encode_chat_completion(mistral_query).tokens
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
sp_tokenizer = tokenizer_v3.instruct_tokenizer.tokenizer
decoded = sp_tokenizer.decode(generated_ids[0])
print(decoded)
```
Alternatively, you can run this example with the Hugging Face tokenizer.
To use this example, you'll need transformers version 4.39.0 or higher.
```console
pip install transformers==4.39.0
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x22B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
conversation=[
{"role": "user", "content": "What's the weather like in Paris?"},
{
"role": "tool_calls",
"content": [
{
"name": "get_current_weather",
"arguments": {"location": "Paris, France", "format": "celsius"},
}
]
},
{
"role": "tool_results",
"content": {"content": 22}
},
{"role": "assistant", "content": "The current temperature in Paris, France is 22 degrees Celsius."},
{"role": "user", "content": "What about San Francisco?"}
]
tools = [{"type": "function", "function": {"name":"get_current_weather", "description": "Get▁the▁current▁weather", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "The city and state, e.g. San Francisco, CA"}, "format": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location."}},"required":["location","format"]}}}]
# render the tool use prompt as a string:
tool_use_prompt = tokenizer.apply_chat_template(
conversation,
chat_template="tool_use",
tools=tools,
tokenize=False,
add_generation_prompt=True,
)
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1")
inputs = tokenizer(tool_use_prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
# Instruct tokenizer
The HuggingFace tokenizer included in this release should match our own. To compare:
`pip install mistral-common`
```py
from mistral_common.protocol.instruct.messages import (
AssistantMessage,
UserMessage,
)
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
from transformers import AutoTokenizer
tokenizer_v3 = MistralTokenizer.v3()
mistral_query = ChatCompletionRequest(
messages=[
UserMessage(content="How many experts ?"),
AssistantMessage(content="8"),
UserMessage(content="How big ?"),
AssistantMessage(content="22B"),
UserMessage(content="Noice 🎉 !"),
],
model="test",
)
hf_messages = mistral_query.model_dump()['messages']
tokenized_mistral = tokenizer_v3.encode_chat_completion(mistral_query).tokens
tokenizer_hf = AutoTokenizer.from_pretrained('mistralai/Mixtral-8x22B-Instruct-v0.1')
tokenized_hf = tokenizer_hf.apply_chat_template(hf_messages, tokenize=True)
assert tokenized_hf == tokenized_mistral
```
# Function calling and special tokens
This tokenizer includes more special tokens, related to function calling :
- [TOOL_CALLS]
- [AVAILABLE_TOOLS]
- [/AVAILABLE_TOOLS]
- [TOOL_RESULTS]
- [/TOOL_RESULTS]
If you want to use this model with function calling, please be sure to apply it similarly to what is done in our [SentencePieceTokenizerV3](https://github.com/mistralai/mistral-common/blob/main/src/mistral_common/tokens/tokenizers/sentencepiece.py#L299).
# The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux,
Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,
Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot,
Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona,
Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon,
Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat,
Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen,
Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao,
Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang,
Valera Nemychnikova, William El Sayed, William Marshall |