GIZ
/

ppsingh commited on
Commit
beff054
1 Parent(s): fa567ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -4
README.md CHANGED
@@ -6,6 +6,18 @@ tags:
6
  model-index:
7
  - name: SECTOR-multilabel-climatebert
8
  results: []
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,7 +25,9 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # SECTOR-multilabel-climatebert
15
 
16
- This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the None dataset.
 
 
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.6028
19
  - Precision-micro: 0.6395
@@ -28,7 +42,9 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
32
 
33
  ## Intended uses & limitations
34
 
@@ -36,7 +52,21 @@ More information needed
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Training procedure
42
 
@@ -64,10 +94,28 @@ The following hyperparameters were used during training:
64
  | 0.1359 | 6.0 | 3798 | 0.5913 | 0.6349 | 0.7506 | 0.6449 | 0.7844 | 0.8676 | 0.7844 | 0.7018 | 0.7667 | 0.7057 |
65
  | 0.1133 | 7.0 | 4431 | 0.6028 | 0.6395 | 0.7543 | 0.6475 | 0.7762 | 0.8583 | 0.7762 | 0.7012 | 0.7655 | 0.7041 |
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
  ### Framework versions
69
 
70
  - Transformers 4.38.1
71
  - Pytorch 2.1.0+cu121
72
  - Datasets 2.18.0
73
- - Tokenizers 0.15.2
 
6
  model-index:
7
  - name: SECTOR-multilabel-climatebert
8
  results: []
9
+ datasets:
10
+ - GIZ/policy_classification
11
+
12
+ co2_eq_emissions:
13
+ emissions: 23.3572576873636
14
+ source: codecarbon
15
+ training_type: fine-tuning
16
+ on_cloud: true
17
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
18
+ ram_total_size: 12.6747894287109
19
+ hours_used: 0.529
20
+ hardware_used: 1 x Tesla T4
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
25
 
26
  # SECTOR-multilabel-climatebert
27
 
28
+ This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
29
+
30
+ *The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training*
31
  It achieves the following results on the evaluation set:
32
  - Loss: 0.6028
33
  - Precision-micro: 0.6395
 
42
 
43
  ## Model description
44
 
45
+ The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict Sector labels - Agriculture,Buildings,
46
+ Coastal Zone,Cross-Cutting Area,Disaster Risk Management (DRM),Economy-wide,Education,Energy,Environment,Health,Industries,LULUCF/Forestry,Social Development,Tourism,
47
+ Transport,Urban,Waste,Water
48
 
49
  ## Intended uses & limitations
50
 
 
52
 
53
  ## Training and evaluation data
54
 
55
+ - Training Dataset: 10031
56
+ | Class | Positive Count of Class|
57
+ |:-------------|:--------|
58
+ | Action | 5416 |
59
+ | Plans | 2140 |
60
+ | Policy | 1396|
61
+ | Target | 2911 |
62
+
63
+ - Validation Dataset: 932
64
+ | Class | Positive Count of Class|
65
+ |:-------------|:--------|
66
+ | Action | 513 |
67
+ | Plans | 198 |
68
+ | Policy | 122 |
69
+ | Target | 256 |
70
 
71
  ## Training procedure
72
 
 
94
  | 0.1359 | 6.0 | 3798 | 0.5913 | 0.6349 | 0.7506 | 0.6449 | 0.7844 | 0.8676 | 0.7844 | 0.7018 | 0.7667 | 0.7057 |
95
  | 0.1133 | 7.0 | 4431 | 0.6028 | 0.6395 | 0.7543 | 0.6475 | 0.7762 | 0.8583 | 0.7762 | 0.7012 | 0.7655 | 0.7041 |
96
 
97
+ |label | precision |recall |f1-score| support|
98
+ |:-------------:|:---------:|:-----:|:------:|:------:|
99
+ |Action |0.828 |0.807 |0.817 | 513.0 |
100
+ |Plans |0.560 |0.707 |0.625 | 198.0 |
101
+ |Policy |0.727 |0.786 |0.756 | 122.0 |
102
+ |Target |0.741 |0.886 |0.808 | 256.0 |
103
+
104
+ ### Environmental Impact
105
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
106
+ - **Carbon Emitted**: 0.02335 kg of CO2
107
+ - **Hours Used**: 0.529 hours
108
+
109
+ ### Training Hardware
110
+ - **On Cloud**: yes
111
+ - **GPU Model**: 1 x Tesla T4
112
+ - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
113
+ - **RAM Size**: 12.67 GB
114
+
115
 
116
  ### Framework versions
117
 
118
  - Transformers 4.38.1
119
  - Pytorch 2.1.0+cu121
120
  - Datasets 2.18.0
121
+ - Tokenizers 0.15.2