Gabriel commited on
Commit
11ae0dd
1 Parent(s): 27cec49

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +45 -31
handler.py CHANGED
@@ -6,60 +6,74 @@ import base64
6
  import requests
7
  import torch
8
 
 
 
9
  class EndpointHandler():
10
  def __init__(self, path=""):
11
  self.processor = AutoProcessor.from_pretrained(path)
12
  self.model = Qwen2VLForConditionalGeneration.from_pretrained(
13
  path, device_map="auto"
14
  )
 
15
 
16
  def __call__(self, data: Any) -> Dict[str, Any]:
17
- image_input = data.get('image')
18
- text_input = data.get('text', "Describe this image.")
 
19
 
20
- if image_input is None:
21
  return {"error": "No image provided."}
22
 
23
  try:
24
  if image_input.startswith('http'):
25
- image = Image.open(requests.get(image_input, stream=True).raw).convert('RGB')
 
 
 
 
26
  else:
27
  image_data = base64.b64decode(image_input)
28
  image = Image.open(io.BytesIO(image_data)).convert('RGB')
29
  except Exception as e:
30
  return {"error": f"Failed to process the image. Details: {str(e)}"}
31
 
32
- conversation = [
33
- {
34
- "role": "user",
35
- "content": [
36
- {"type": "image"},
37
- {"type": "text", "text": text_input},
38
- ],
39
- }
40
- ]
 
41
 
42
- text_prompt = self.processor.apply_chat_template(
43
- conversation, add_generation_prompt=True
44
- )
45
 
46
- inputs = self.processor(
47
- text=[text_prompt],
48
- images=[image],
49
- padding=True,
50
- return_tensors="pt",
51
- )
 
 
52
 
53
- inputs = inputs.to(self.model.device)
 
 
54
 
55
- output_ids = self.model.generate(**inputs, max_new_tokens=128)
 
 
56
 
57
- generated_ids = [
58
- output_id[len(input_id):] for input_id, output_id in zip(inputs.input_ids, output_ids)
59
- ]
60
 
61
- output_text = self.processor.batch_decode(
62
- generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
63
- )[0]
64
 
65
- return {"generated_text": output_text}
 
 
6
  import requests
7
  import torch
8
 
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+
11
  class EndpointHandler():
12
  def __init__(self, path=""):
13
  self.processor = AutoProcessor.from_pretrained(path)
14
  self.model = Qwen2VLForConditionalGeneration.from_pretrained(
15
  path, device_map="auto"
16
  )
17
+ self.model.to(device)
18
 
19
  def __call__(self, data: Any) -> Dict[str, Any]:
20
+ inputs = data.pop("inputs", data)
21
+ image_input = inputs.get('image')
22
+ text_input = inputs.get('text', "Describe this image.")
23
 
24
+ if not image_input:
25
  return {"error": "No image provided."}
26
 
27
  try:
28
  if image_input.startswith('http'):
29
+ response = requests.get(image_input, stream=True)
30
+ if response.status_code == 200:
31
+ image = Image.open(response.raw).convert('RGB')
32
+ else:
33
+ return {"error": f"Failed to fetch image. Status code: {response.status_code}"}
34
  else:
35
  image_data = base64.b64decode(image_input)
36
  image = Image.open(io.BytesIO(image_data)).convert('RGB')
37
  except Exception as e:
38
  return {"error": f"Failed to process the image. Details: {str(e)}"}
39
 
40
+ try:
41
+ conversation = [
42
+ {
43
+ "role": "user",
44
+ "content": [
45
+ {"type": "image"},
46
+ {"type": "text", "text": text_input},
47
+ ],
48
+ }
49
+ ]
50
 
51
+ text_prompt = self.processor.apply_chat_template(
52
+ conversation, add_generation_prompt=True
53
+ )
54
 
55
+ inputs = self.processor(
56
+ text=[text_prompt],
57
+ images=[image],
58
+ padding=True,
59
+ return_tensors="pt",
60
+ )
61
+
62
+ inputs = inputs.to(device)
63
 
64
+ output_ids = self.model.generate(
65
+ **inputs, max_new_tokens=128
66
+ )
67
 
68
+ generated_ids = [
69
+ output_id[len(input_id):] for input_id, output_id in zip(inputs.input_ids, output_ids)
70
+ ]
71
 
72
+ output_text = self.processor.batch_decode(
73
+ generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
74
+ )[0]
75
 
76
+ return {"generated_text": output_text}
 
 
77
 
78
+ except Exception as e:
79
+ return {"error": f"Failed during generation. Details: {str(e)}"}