from typing import Dict, Any from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from PIL import Image import io import base64 import requests import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler(): def __init__(self, path=""): self.processor = AutoProcessor.from_pretrained(path) self.model = Qwen2VLForConditionalGeneration.from_pretrained( path, device_map="auto" ) self.model.to(device) def __call__(self, data: Any) -> Dict[str, Any]: inputs = data.pop("inputs", data) image_input = inputs.get('image') text_input = inputs.get('text', "Describe this image.") if not image_input: return {"error": "No image provided."} try: if image_input.startswith('http'): response = requests.get(image_input, stream=True) if response.status_code == 200: image = Image.open(response.raw).convert('RGB') else: return {"error": f"Failed to fetch image. Status code: {response.status_code}"} else: image_data = base64.b64decode(image_input) image = Image.open(io.BytesIO(image_data)).convert('RGB') except Exception as e: return {"error": f"Failed to process the image. Details: {str(e)}"} try: conversation = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text_input}, ], } ] text_prompt = self.processor.apply_chat_template( conversation, add_generation_prompt=True ) inputs = self.processor( text=[text_prompt], images=[image], padding=True, return_tensors="pt", ) inputs = inputs.to(device) output_ids = self.model.generate( **inputs, max_new_tokens=128 ) generated_ids = [ output_id[len(input_id):] for input_id, output_id in zip(inputs.input_ids, output_ids) ] output_text = self.processor.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] return {"generated_text": output_text} except Exception as e: return {"error": f"Failed during generation. Details: {str(e)}"}