File size: 2,115 Bytes
97692cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_120-samples_config-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-1_120-samples_config-1
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9299
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8587 | 1.0 | 11 | 1.8962 |
| 1.5582 | 2.0 | 22 | 1.5353 |
| 1.3116 | 3.0 | 33 | 1.3440 |
| 1.1103 | 4.0 | 44 | 1.2486 |
| 0.9015 | 5.0 | 55 | 1.2432 |
| 0.6339 | 6.0 | 66 | 1.3448 |
| 0.2953 | 7.0 | 77 | 1.6649 |
| 0.2611 | 8.0 | 88 | 1.9195 |
| 0.107 | 9.0 | 99 | 2.4669 |
| 0.0592 | 10.0 | 110 | 2.5539 |
| 0.06 | 11.0 | 121 | 2.4769 |
| 0.0548 | 12.0 | 132 | 2.9299 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |