--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: Llama-31-8B_task-1_60-samples_config-2_full results: [] --- # Llama-31-8B_task-1_60-samples_config-2_full This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.5391 | 0.6957 | 2 | 2.3916 | | 2.4703 | 1.7391 | 5 | 2.2074 | | 2.1328 | 2.7826 | 8 | 1.9537 | | 1.9709 | 3.8261 | 11 | 1.6769 | | 1.5704 | 4.8696 | 14 | 1.3962 | | 1.3765 | 5.9130 | 17 | 1.1358 | | 1.0594 | 6.9565 | 20 | 1.0275 | | 0.9969 | 8.0 | 23 | 0.9877 | | 0.9485 | 8.6957 | 25 | 0.9700 | | 0.8932 | 9.7391 | 28 | 0.9503 | | 0.8815 | 10.7826 | 31 | 0.9331 | | 0.8229 | 11.8261 | 34 | 0.9216 | | 0.8136 | 12.8696 | 37 | 0.9111 | | 0.7507 | 13.9130 | 40 | 0.9021 | | 0.7373 | 14.9565 | 43 | 0.8982 | | 0.6959 | 16.0 | 46 | 0.9020 | | 0.6651 | 16.6957 | 48 | 0.9060 | | 0.6589 | 17.7391 | 51 | 0.9119 | | 0.5782 | 18.7826 | 54 | 0.9264 | | 0.585 | 19.8261 | 57 | 0.9372 | | 0.511 | 20.8696 | 60 | 0.9604 | | 0.4767 | 21.9130 | 63 | 0.9806 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1