File size: 4,206 Bytes
6ad0939
 
4a6b29e
 
6ad0939
 
 
4a6b29e
6ad0939
 
 
 
 
 
 
 
 
 
 
 
 
4a6b29e
6ad0939
4a6b29e
6ad0939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-1
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-1_60-samples_config-3_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-1_60-samples_config-3_full

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9224

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.5395        | 0.8696  | 5    | 2.4149          |
| 2.4512        | 1.9130  | 11   | 2.3973          |
| 2.4419        | 2.9565  | 17   | 2.3721          |
| 2.3921        | 4.0     | 23   | 2.3361          |
| 2.3357        | 4.8696  | 28   | 2.2954          |
| 2.3559        | 5.9130  | 34   | 2.2287          |
| 2.2622        | 6.9565  | 40   | 2.1654          |
| 2.186         | 8.0     | 46   | 2.0752          |
| 2.0842        | 8.8696  | 51   | 2.0000          |
| 2.0522        | 9.9130  | 57   | 1.8960          |
| 1.911         | 10.9565 | 63   | 1.7942          |
| 1.8076        | 12.0    | 69   | 1.6760          |
| 1.659         | 12.8696 | 74   | 1.5645          |
| 1.5002        | 13.9130 | 80   | 1.4214          |
| 1.309         | 14.9565 | 86   | 1.2940          |
| 1.2079        | 16.0    | 92   | 1.1837          |
| 1.1738        | 16.8696 | 97   | 1.1230          |
| 1.0304        | 17.9130 | 103  | 1.0781          |
| 1.0485        | 18.9565 | 109  | 1.0459          |
| 0.9687        | 20.0    | 115  | 1.0258          |
| 0.9883        | 20.8696 | 120  | 1.0147          |
| 0.974         | 21.9130 | 126  | 1.0013          |
| 0.9397        | 22.9565 | 132  | 0.9905          |
| 0.9522        | 24.0    | 138  | 0.9816          |
| 0.9115        | 24.8696 | 143  | 0.9739          |
| 0.9412        | 25.9130 | 149  | 0.9668          |
| 0.9168        | 26.9565 | 155  | 0.9610          |
| 0.9461        | 28.0    | 161  | 0.9547          |
| 0.8579        | 28.8696 | 166  | 0.9499          |
| 0.8857        | 29.9130 | 172  | 0.9454          |
| 0.8465        | 30.9565 | 178  | 0.9405          |
| 0.8681        | 32.0    | 184  | 0.9393          |
| 0.8257        | 32.8696 | 189  | 0.9344          |
| 0.8425        | 33.9130 | 195  | 0.9336          |
| 0.8405        | 34.9565 | 201  | 0.9281          |
| 0.8101        | 36.0    | 207  | 0.9283          |
| 0.7808        | 36.8696 | 212  | 0.9259          |
| 0.7971        | 37.9130 | 218  | 0.9259          |
| 0.7766        | 38.9565 | 224  | 0.9235          |
| 0.7748        | 40.0    | 230  | 0.9245          |
| 0.7476        | 40.8696 | 235  | 0.9253          |
| 0.7007        | 41.9130 | 241  | 0.9224          |
| 0.741         | 42.9565 | 247  | 0.9261          |
| 0.7371        | 44.0    | 253  | 0.9239          |
| 0.7239        | 44.8696 | 258  | 0.9323          |
| 0.671         | 45.9130 | 264  | 0.9269          |
| 0.7312        | 46.9565 | 270  | 0.9333          |
| 0.6826        | 48.0    | 276  | 0.9345          |
| 0.6472        | 48.8696 | 281  | 0.9393          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1