File size: 2,146 Bytes
6a5d45d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Mistral-7B_task-3_180-samples_config-2_auto
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B_task-3_180-samples_config-2_auto
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4926
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.4492 | 0.9412 | 8 | 1.9220 |
| 0.637 | 2.0 | 17 | 0.5030 |
| 0.3581 | 2.9412 | 25 | 0.3322 |
| 0.2132 | 4.0 | 34 | 0.2934 |
| 0.1909 | 4.9412 | 42 | 0.2898 |
| 0.1449 | 6.0 | 51 | 0.3128 |
| 0.0826 | 6.9412 | 59 | 0.3488 |
| 0.0486 | 8.0 | 68 | 0.4204 |
| 0.0329 | 8.9412 | 76 | 0.4306 |
| 0.0163 | 10.0 | 85 | 0.4600 |
| 0.0215 | 10.9412 | 93 | 0.4499 |
| 0.0048 | 12.0 | 102 | 0.4926 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |