File size: 33,769 Bytes
4008bf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Evaluating a Whisper model on one or more speech recognition datasets.
"""
# You can also adapt this script for your own speech recognition validation. Pointers for this are left as comments.

import json
import logging
import os
import sys
import tempfile
import time
from dataclasses import dataclass, field
from typing import Optional

import datasets
import evaluate
import numpy as np
import torch
import transformers
from datasets import DatasetDict, IterableDatasetDict, load_dataset
from tqdm import tqdm
from transformers import (
    HfArgumentParser,
    WhisperForConditionalGeneration,
    WhisperProcessor,
    is_wandb_available,
    pipeline,
    set_seed,
)
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer, BasicTextNormalizer
from transformers.models.whisper.modeling_whisper import WhisperForCausalLM
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.utils import check_min_version, is_accelerate_available
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.34.0.dev0")

require_version("datasets>=2.14.6", "To fix: `pip install --upgrade datasets`")

logger = logging.getLogger(__name__)

PIPELINE_BATCH_SIZE = 16


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset hours by a '+' symbol."
        },
    )
    model_name_or_path: str = field(
        default=None,
        metadata={"help": "The name of the model to use (via the transformers library). "},
    )
    subfolder: str = field(
        default="",
        metadata={"help": "If specified load weights from a subfolder in the model repository"},
    )
    model_variant: str = field(
        default=None,
        metadata={"help": "If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. "},
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    assistant_model_name_or_path: str = field(
        default=None,
        metadata={
            "help": "The name of the assistant model to use to do speculative decoding. If None, no speculative decoding will be done."
        },
    )
    dtype: Optional[str] = field(
        default="float16",
        metadata={
            "help": (
                "Floating-point format in which the model weights should be initialized"
                " and the computations run. Choose one of `[float32, float16, bfloat16]`."
            )
        },
    )
    use_pipeline: bool = field(
        default=False,
        metadata={"help": "Whether to evaluate with Transformers pipeline"},
    )
    chunk_length_s: float = field(
        default=30.0, metadata={"help": "Chunk length to use when `use_pipeline` is enabled."}
    )
    return_timestamps: bool = field(
        default=True,
        metadata={
            "help": "Whether to decode with timestamps. This can help for improved WER for long form evaluation."
        },
    )
    language: str = field(
        default=None,
        metadata={
            "help": (
                "Language for multilingual evaluation. This argument should be set for multilingual evaluation "
                "only. For English speech recognition, it should be left as `None`."
            )
        },
    )
    task: str = field(
        default="transcribe",
        metadata={
            "help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."
            "This argument should be set for multilingual evaluation only. For English speech recognition, it should be left as `None`."
        },
    )
    attn_implementation: Optional[str] = field(
        default=None,
        metadata={"help": "Which attn type to use: ['eager', 'sdpa', 'flash_attention_2']"},
    )
    batch_size: int = field(
        default=1,
        metadata={"help": "The batch size to be used for generation."},
    )
    num_beams: int = field(
        default=1,
        metadata={"help": "The beam size to be used for evaluation. Set to 1 for greedy, or >1 for beam search."},
    )
    temperature_fallback: bool = field(
        default=True,
        metadata={"help": "Whether to use temperature fallback for evaluation."},
    )
    logprob_threshold: float = field(
        default=-1.0,
        metadata={"help": "Whether to use temperature fallback for evaluation."},
    )
    no_speech_threshold: float = field(
        default=0.6,
        metadata={
            "help": "Only relevant for long-form transcription. If defined, the 'no-speech' token combined with the `logprob_threshold`"
            "is used to determine whether a segment contains only silence. In this case, the transcription for this segment"
            "is skipped."
        },
    )
    compression_ratio_threshold: float = field(
        default=1.35,
        metadata={
            "help": "Only relevant for long-form transcription. If defined, the zlib compression rate of each segment will be computed. If the compression rate of"
            "a segment is higher than `compression_ratio_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is"
            "repeated using a higher temperature. The intuition behind this feature is that segments with very high compression rates"
            "suffer from a lot of repetition. The unwanted repetition can be reduced by injecting more randomness by increasing the temperature. "
            "If `compression_ratio_threshold` is defined make sure that `temperature` is a list of values. The default value for `compression_ratio_threshold` is 1.35."
        },
    )
    condition_on_prev_tokens: bool = field(
        default=False,
        metadata={"help": "Whether to condition on previous tokens or not"},
    )
    samples_per_dataset: Optional[int] = field(
        default=None,
        metadata={"help": "Number of samples per dataset used to measure speed."},
    )
    dataset_config_name: Optional[str] = field(
        default=None,
        metadata={"help": "The configuration name of the dataset to use (via the datasets library)."},
    )
    dataset_split_name: Optional[str] = field(
        default=None,
        metadata={"help": "The split name of the dataset to use (via the datasets library)."},
    )
    dataset_cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to cache directory for saving and loading datasets"},
    )
    overwrite_cache: bool = field(
        default=False,
        metadata={"help": "Overwrite the cached training and evaluation sets"},
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
    text_column_name: str = field(
        default=None,
        metadata={"help": "The name of the dataset column containing the text data. Defaults to `text`."},
    )
    generation_max_length: int = field(
        default=256, metadata={"help": "Generate up until `generation_max_length` tokens."}
    )
    log_predictions: Optional[bool] = field(
        default=True,
        metadata={"help": "Whether or not to log the ground truths / pred text to the wandb logger."},
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to only do data preprocessing and skip training. This is"
                " especially useful when data preprocessing errors out in distributed"
                " training due to timeout. In this case, one should run the"
                " preprocessing in a non-distributed setup with"
                " `preprocessing_only=True` so that the cached datasets can"
                " consequently be loaded in distributed training"
            )
        },
    )
    wandb_project: str = field(
        default="distil-whisper-speed-benchmark",
        metadata={"help": "The name of the wandb project."},
    )
    wandb_name: str = field(
        default=None,
        metadata={"help": "The name of the wandb run."},
    )
    wandb_job_type: str = field(
        default="distil-whisper",
        metadata={"help": "The name of the wandb job type."},
    )
    wandb_dir: str = field(
        default=None,
        metadata={"help": "The absolute path to save the wandb logs."},
    )
    save_code_to_wandb: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether to save main script to wandb. This is valuable for improving"
                " experiment reproducibility and to diff code across experiments in"
                " the UI."
            )
        },
    )
    streaming: bool = field(
        default=True,
        metadata={"help": "Whether to use Datasets' streaming mode to load and the data."},
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={"help": "For debugging purposes, truncate the number of eval examples to this value if set."},
    )
    seed: int = field(default=42, metadata={"help": "RNG seed for reproducibility."})
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    prompt_text: str = field(
        default=None,
        metadata={
            "help": "Text prompt to condition the generation on. Useful for controlling the style of transcription and predicting named entities."
        },
    )


def write_metric(summary_writer, eval_metrics, step, prefix="eval"):
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"{prefix}/{metric_name}", value, step)


def write_wandb_metric(wandb_logger, metrics, prefix):
    log_metrics = {}
    for k, v in metrics.items():
        log_metrics[f"{prefix}/{k}"] = v
    wandb_logger.log(log_metrics)


def write_wandb_pred(
    wandb_logger,
    pred_str,
    label_str,
    norm_pred_str,
    norm_label_str,
    wer_per_sample,
    prefix="eval",
):
    columns = ["WER", "Target", "Pred", "Norm Target", "Norm Pred"]
    # convert str data to a wandb compatible format
    str_data = [
        [wer_per_sample[i], label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]]
        for i in range(len(pred_str))
    ]

    # log as a table with the appropriate headers
    wandb_logger.log(
        {f"{prefix}/predictions": wandb_logger.Table(columns=columns, data=str_data)},
    )


def convert_dataset_str_to_list(
    dataset_names, dataset_config_names, splits=None, text_column_names=None, dataset_hours=None, default_split="train"
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")

        # we assume that all the datasets we're using derive from the distil-whisper org on the Hub - prepend the org name if necessary
        for i in range(len(dataset_names)):
            ds_name = dataset_names[i]
            dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name

        dataset_config_names = dataset_config_names.split("+") if dataset_config_names is not None else None
        splits = splits.split("+") if splits is not None else None
        text_column_names = text_column_names.split("+") if text_column_names is not None else None
        dataset_hours = dataset_hours.split("+") if dataset_hours is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if dataset_config_names is not None and len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if text_column_names is not None and len(text_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(text_column_names)} text column names."
        )

    if dataset_hours is not None:
        if len(dataset_hours) != len(dataset_names):
            raise ValueError(
                f"Ensure one probability is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_hours)} hours."
            )
        dataset_hours = [float(ds_hours) for ds_hours in dataset_hours]
    else:
        dataset_hours = [None] * len(dataset_names)

    dataset_config_names = (
        dataset_config_names if dataset_config_names is not None else ["default" for _ in range(len(dataset_names))]
    )
    text_column_names = (
        text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))]
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "text_column_name": text_column_names[i],
                "hours": dataset_hours[i],
            }
        )
    return dataset_names_dict


def language_to_id(language: str, generation_config) -> str:
    language = language.lower()
    if language in generation_config.lang_to_id.keys():
        language_token = language
    elif language in TO_LANGUAGE_CODE.keys():
        language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
    elif language in TO_LANGUAGE_CODE.values():
        language_token = f"<|{language}|>"
    else:
        is_language_code = len(language) == 2
        raise ValueError(
            f"Unsupported language: {language}. Language should be one of:"
            f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
        )
    if language_token not in generation_config.lang_to_id:
        raise ValueError(
            f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`."
            "(You should just add it to the generation config)"
        )

    return language_token


def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser([DataTrainingArguments])

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        data_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
    else:
        data_args = parser.parse_args_into_dataclasses()[0]

    # 2. Setup logging
    # Make one log on every process with the configuration for debugging.
    logger.setLevel(logging.INFO)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    # 3. Set seed for reproducibility
    set_seed(data_args.seed)

    if data_args.use_pipeline and data_args.batch_size > 1:
        raise ValueError("Make sure that `batch_size` is set to 1 when `use_pipeline=True`.")

    has_wandb = is_wandb_available()
    if has_wandb:
        import wandb
        import wandb as wandb_logger

        # store generation HPs for runs
        generation_arguments = {
            "torch_version": str(torch.__version__),
            "transformers_version": str(transformers.__version__),
            "attn_implementation": data_args.attn_implementation,
            "model_name_or_path": data_args.model_name_or_path,
            "subfolder": data_args.subfolder,
            "assistant_model_name_or_path": data_args.assistant_model_name_or_path,
            "seed": data_args.seed,
            "batch_size": data_args.batch_size,
            "num_beams": data_args.num_beams,
            "return_timestamps": data_args.return_timestamps,
            "condition_on_prev_tokens": data_args.condition_on_prev_tokens,
            "temperature_fallback": data_args.temperature_fallback,
            "logprob_threshold": data_args.logprob_threshold,
            "no_speech_threshold": data_args.no_speech_threshold,
            "use_pipeline": data_args.use_pipeline,
            "chunk_length_s": data_args.chunk_length_s,
        }

        # Set up wandb run
        wandb_logger.init(
            project=data_args.wandb_project,
            name=data_args.wandb_name,
            job_type=data_args.wandb_job_type,
            dir=data_args.wandb_dir,
            save_code=data_args.save_code_to_wandb,
            config=generation_arguments,
        )

    else:
        raise ValueError("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.")

    # 3. Load dataset
    raw_datasets = IterableDatasetDict()

    # Convert lists of dataset names/configs/splits to a dict
    # names: "librispeech_asr+gigaspeech", configs: "all+l", splits: "validation.clean+validation"
    # -> [{"name: "librispeech_asr": "config": "all", "split": "validation.clean"}, {"name: "gigaspeech": "config": "l", "split": "validation"}
    dataset_names_dict = convert_dataset_str_to_list(
        data_args.dataset_name,
        data_args.dataset_config_name,
        splits=data_args.dataset_split_name,
        text_column_names=data_args.text_column_name,
    )

    # load multiple eval sets
    for dataset_dict in tqdm(dataset_names_dict, desc="Loading datasets..."):
        sub_dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            cache_dir=data_args.dataset_cache_dir,
            streaming=data_args.streaming,
            num_proc=data_args.preprocessing_num_workers,
        )
        if dataset_dict["text_column_name"] not in list(sub_dataset.features.keys()):
            raise ValueError(
                f"`--text_column_name` {dataset_dict['text_column_name']} not found in the evaluation "
                f"dataset {dataset_dict['name']}. Ensure `text_column_name` is set to the correct column "
                f"for the target text. Should be one of {' '.join(list(sub_dataset.features.keys()))}"
            )
        if dataset_dict["text_column_name"] != "text":
            sub_dataset = sub_dataset.rename_column(dataset_dict["text_column_name"], "text")
        if not data_args.streaming:
            sub_dataset = sub_dataset.to_iterable_dataset()

        # Clean-up the dataset name for pretty logging
        # ("distil-whisper/librispeech_asr", "validation.clean") -> "librispeech_asr/validation-clean"
        pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
        raw_datasets[pretty_name] = sub_dataset

    # 5. Load pretrained model, tokenizer, and feature extractor
    processor = WhisperProcessor.from_pretrained(
        data_args.model_name_or_path,
        subfolder=data_args.subfolder,
        cache_dir=data_args.cache_dir,
        use_fast=data_args.use_fast_tokenizer,
    )
    dtype = getattr(torch, data_args.dtype)
    model = WhisperForConditionalGeneration.from_pretrained(
        data_args.model_name_or_path,
        subfolder=data_args.subfolder,
        torch_dtype=dtype,
        attn_implementation=data_args.attn_implementation,
        low_cpu_mem_usage=is_accelerate_available(),
        cache_dir=data_args.cache_dir,
        variant=data_args.model_variant,
    )
    model.to("cuda:0", dtype=dtype)

    model_pipeline = None
    if data_args.use_pipeline:
        model_pipeline = pipeline(
            "automatic-speech-recognition",
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            torch_dtype=dtype,
            device=model.device,
            chunk_length_s=data_args.chunk_length_s,
        )
        model_pipeline_forward = model_pipeline._forward

    assistant_model = None
    if data_args.assistant_model_name_or_path is not None:
        logger.info("Loading assistant model...")

        if data_args.assistant_model_name_or_path.startswith("openai"):
            assistant_model = WhisperForConditionalGeneration.from_pretrained(
                data_args.assistant_model_name_or_path,
                torch_dtype=dtype,
                attn_implementation=data_args.attn_implementation,
                low_cpu_mem_usage=is_accelerate_available(),
                cache_dir=data_args.cache_dir,
            )
        else:
            assistant_model = WhisperForCausalLM.from_pretrained(
                data_args.assistant_model_name_or_path,
                torch_dtype=dtype,
                attn_implementation=data_args.attn_implementation,
                low_cpu_mem_usage=is_accelerate_available(),
                cache_dir=data_args.cache_dir,
            )

        assistant_model.cuda()

    # 6. Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name,
        datasets.features.Audio(sampling_rate=processor.feature_extractor.sampling_rate),
    )

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    audio_column_name = data_args.audio_column_name
    language = language_to_id(data_args.language, model.generation_config) if data_args.language else None
    if language is None or language == "<|en|>":
        normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer)
    else:
        normalizer = BasicTextNormalizer()

    sampling_rate = processor.feature_extractor.sampling_rate

    if data_args.samples_per_dataset is not None:
        for split in raw_datasets:
            raw_datasets[split] = raw_datasets[split].take(data_args.samples_per_dataset)

    def prepare_dataset(batch):
        # process audio
        audio = [sample["array"].astype(np.float32) for sample in batch[audio_column_name]]

        if model_pipeline is None:
            inputs = processor.feature_extractor(
                audio,
                sampling_rate=sampling_rate,
                return_tensors="pt",
                truncation=False,
                padding="longest",
                return_attention_mask=True,
            )
            if inputs.input_features.shape[-1] < 3000:
                inputs = processor.feature_extractor(
                    audio,
                    sampling_rate=sampling_rate,
                    return_tensors="pt",
                    return_attention_mask=True,
                )
            batch["input_features"] = inputs.input_features.to(dtype)
            batch["attention_mask"] = inputs.attention_mask
        else:
            batch["input_features"] = audio

        # process audio length
        batch["length_in_s"] = [len(sample) / sampling_rate for sample in audio]
        # process targets
        batch["reference"] = batch["text"]
        return batch

    vectorized_datasets = IterableDatasetDict()

    for split in raw_datasets:
        raw_datasets_features = list(raw_datasets[split].features.keys())

        vectorized_datasets[split] = raw_datasets[split].map(
            function=prepare_dataset,
            remove_columns=raw_datasets_features,
            batch_size=data_args.batch_size,
            batched=True,
        )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    metric = evaluate.load("wer")

    def compute_metrics(pred_str, label_str):
        # normalize everything and re-compute the WER
        norm_pred_str = [normalizer(pred) for pred in pred_str]
        norm_label_str = [normalizer(label) for label in label_str]

        # filtering step to only evaluate the samples that correspond to non-zero normalized references:
        norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
        norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]

        wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
        return wer

    gen_kwargs = {
        "max_length": data_args.generation_max_length,
        "return_timestamps": data_args.return_timestamps,
        "num_beams": data_args.num_beams,
        "top_k": 0,
    }

    if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual:
        gen_kwargs["language"] = data_args.language
        gen_kwargs["task"] = data_args.task
    elif data_args.language is not None:
        raise ValueError(
            "Setting language token for an English-only checkpoint is not permitted. The language argument should "
            "only be set for multilingual checkpoints."
        )

    if assistant_model is not None:
        gen_kwargs["assistant_model"] = assistant_model

    if data_args.prompt_text is not None:
        gen_kwargs["prompt_ids"] = processor.get_prompt_ids(data_args.prompt_text, return_tensors="pt").to("cuda:0")

    long_form_gen_kwargs = {
        "condition_on_prev_tokens": data_args.condition_on_prev_tokens,
        "compression_ratio_threshold": data_args.compression_ratio_threshold,
        "temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) if data_args.temperature_fallback else 0,
        "logprob_threshold": data_args.logprob_threshold,
        "no_speech_threshold": data_args.no_speech_threshold,
    }

    def benchmark(batch):
        if model_pipeline is None:
            inputs = torch.stack(batch["input_features"], dim=0).cuda()
            attention_mask = torch.stack(batch["attention_mask"], dim=0).cuda()
            # automatically use long-form args if required
            inner_batch_size, num_mels, seq_len = inputs.shape
            if seq_len == 3000:
                batch_gen_kwargs = gen_kwargs
            else:
                batch_gen_kwargs = {**gen_kwargs, **long_form_gen_kwargs}

            set_seed(data_args.seed)
            start_time = time.time()
            output_ids = model.generate(inputs, attention_mask=attention_mask, **batch_gen_kwargs)
            batch["time"] = inner_batch_size * [(time.time() - start_time) / inner_batch_size]

            batch["transcription"] = processor.batch_decode(
                output_ids, skip_special_tokens=True, decode_with_timestamps=data_args.return_timestamps
            )

        else:
            inputs = batch["input_features"]
            # Time forward: let's make sure that only forward is timed and not pre- and post-processing
            time_result = []

            def _forward_time(*args, **kwargs):
                start_time = time.time()
                result = model_pipeline_forward(*args, **kwargs)
                end_time = time.time() - start_time
                time_result.append(end_time)
                return result

            model_pipeline._forward = _forward_time

            result = model_pipeline(inputs, batch_size=PIPELINE_BATCH_SIZE, generate_kwargs=gen_kwargs)[0]["text"]
            batch["transcription"] = [result]
            batch["time"] = [sum(time_result)]

        batch["num_words"] = [len(r.split()) for r in batch["reference"]]
        return batch

    result_datasets = DatasetDict()

    for split in vectorized_datasets:
        result_datasets[split] = vectorized_datasets[split].map(
            function=benchmark,
            remove_columns=["input_features"],
            batch_size=data_args.batch_size,
            batched=True,
        )

    stats_dataset = DatasetDict()

    all_stats = {"rtf": 0, "wer": 0}
    rtf_stats = {
        "times_audio_total": 0,
        "times_transcription_total": 0,
    }

    logger.info("***** Running Evaluation *****")
    for key in generation_arguments:
        logger.info(f"  {key}: {generation_arguments[key]}")

    datasets_evaluated_progress_bar = tqdm(result_datasets, desc="Datasets", position=0)
    for split in datasets_evaluated_progress_bar:
        transcriptions = []
        references = []
        stats = {}
        times_audio_total = 0
        times_transcription_total = 0

        datasets_evaluated_progress_bar.write(f"Start benchmarking {split}...")
        result_iter = iter(result_datasets[split])
        for result in tqdm(result_iter, desc="Samples", position=1):
            times_audio_total += result["length_in_s"]
            times_transcription_total += result["time"]
            # ensure prompt is removed from the transcription (awaiting fix in Transformers)
            if data_args.prompt_text is not None:
                result["transcription"] = result["transcription"].replace(data_args.prompt_text, "")
            transcriptions.append(result["transcription"])
            references.append(result["reference"])

        norm_transcriptions = [normalizer(pred) for pred in transcriptions]
        norm_references = [normalizer(label) for label in references]

        transcriptions = [transcriptions[i] for i in range(len(transcriptions)) if len(norm_references[i]) > 0]
        references = [references[i] for i in range(len(references)) if len(norm_references[i]) > 0]

        norm_transcriptions = [
            norm_transcriptions[i] for i in range(len(norm_transcriptions)) if len(norm_references[i]) > 0
        ]
        norm_references = [norm_references[i] for i in range(len(norm_references)) if len(norm_references[i]) > 0]

        stats["wer"] = compute_metrics(norm_transcriptions, norm_references)

        wer_per_sample = []
        for pred, ref in zip(norm_transcriptions, norm_references):
            wer_per_sample.append(compute_metrics([pred], [ref]))

        stats["rtf"] = times_audio_total / times_transcription_total
        stats_dataset[split] = stats

        wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in stats.items()])
        datasets_evaluated_progress_bar.write(wer_desc)

        write_wandb_metric(wandb_logger, stats, prefix=split)

        if data_args.log_predictions:
            write_wandb_pred(
                wandb_logger,
                transcriptions,
                references,
                norm_transcriptions,
                norm_references,
                wer_per_sample,
                prefix=split,
            )

        rtf_stats["times_audio_total"] += times_audio_total
        rtf_stats["times_transcription_total"] += times_transcription_total
        all_stats["wer"] += stats["wer"]

    all_stats["wer"] = all_stats["wer"] / len(result_datasets)
    # technically this is the reciprocal of the RTF, but it makes the scale easier to read on wandb
    all_stats["rtf"] = rtf_stats["times_audio_total"] / rtf_stats["times_transcription_total"]

    stats_dataset["all"] = all_stats

    write_wandb_metric(wandb_logger, all_stats, prefix="all")

    benchmark_artifact = wandb.Artifact("Benchmark", type="datasets")
    with tempfile.TemporaryDirectory() as temp_dir:
        for split in stats_dataset:
            file_name = os.path.join(temp_dir, f"{'_'.join(split.split('/'))}.json")

            with open(file_name, "w") as json_file:
                json.dump(stats_dataset[split], json_file)

            benchmark_artifact.add_file(file_name, split)

        wandb_logger.log_artifact(benchmark_artifact)


if __name__ == "__main__":
    main()