GillesEverling
commited on
Commit
•
5251715
1
Parent(s):
a926eea
Default model
Browse files- GEmodel1.zip +3 -0
- GEmodel1/_stable_baselines3_version +1 -0
- GEmodel1/data +95 -0
- GEmodel1/policy.optimizer.pth +3 -0
- GEmodel1/policy.pth +3 -0
- GEmodel1/pytorch_variables.pth +3 -0
- GEmodel1/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
GEmodel1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98ea61854340b12f352735d5df32ed09efe963801c2465f4c627d67425f62c98
|
3 |
+
size 147429
|
GEmodel1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
GEmodel1/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f30acae3550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30acae35e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30acae3670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30acae3700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f30acae3790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f30acae3820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30acae38b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30acae3940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f30acae39d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30acae3a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30acae3af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30acae3b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f30acae0cc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678692110511186983,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb15jy4Rrq5ShOQuU3myLT2j9G5gkOqOAAAgD8AAIA/5lyDvfaEP7oGpIW7DHJgODSRo7oCbcs4AACAPwAAgD8zDfW8ds0TvAESDDyWarA8eBluPSp5kb0AAIA/AACAP03Vdz1cbye67gKKNtYwrDE5Mik7SLiltQAAgD8AAIA/QPnEPbxvhj8bWuM9BZecvpNz9T1rIRo9AAAAAAAAAABmJpO6XFZnvLYMgb1c6JS8amiJvX8joL4AAIA/AACAP43tl732XEC6m6pyOYkQhTIEL2S7SlSNuAAAgD8AAIA/AFB8uykARLo+Mqs7pK5aOK4mojq2uYq4AACAPwAAgD+zuEG9XNdPuvjXajpe7fY0HV+iu3YBiLkAAIA/AACAP82r8DzDnWG69KjBOpOiqjW0/Si7npfjuQAAgD8AAIA/5pQXvcNRd7o/vCM5rxMfNPWhqTrJej+4AACAPwAAgD+AhRW99nxouoUKxzsH64s2zIlXuwJkiDUAAIA/AACAP03GeT2kEnG7ByiFvBqVajyFwcC89nRKPQAAgD8AAIA/miTwvCnwaLp1xXM6CaJNtJtSkjmvuI65AACAPwAAgD9mKlK9nnjsPlZZpT1wK62+grg/vdAHYz0AAAAAAAAAAEDoCD5sjJE+qhshvY+MaL5Ntfs8QFHavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh/vIrUm5YkCUhpRSlIwBbJRN6AOMAXSUR0CXjMVD8cdYdX2UKGgGaAloD0MIK4arA6CvZUCUhpRSlGgVTegDaBZHQJePK+23KCB1fZQoaAZoCWgPQwga+5KNB+VnQJSGlFKUaBVN6ANoFkdAl4/+yeI2wXV9lChoBmgJaA9DCNiDSfHxBGZAlIaUUpRoFU3oA2gWR0CXkL2DQJHBdX2UKGgGaAloD0MICr/Uz1vDcECUhpRSlGgVTdUDaBZHQJefD9CNS611fZQoaAZoCWgPQwijBP2FngxmQJSGlFKUaBVN6ANoFkdAl6DhGpda+3V9lChoBmgJaA9DCHLdlPLaPGBAlIaUUpRoFU3oA2gWR0CXocIeHSF5dX2UKGgGaAloD0MIMV7zqk6bY0CUhpRSlGgVTegDaBZHQJeiJSgoPTZ1fZQoaAZoCWgPQwiBW3fz1A1iQJSGlFKUaBVN6ANoFkdAl6P5C0F8onV9lChoBmgJaA9DCGpOXmSCdmdAlIaUUpRoFU3oA2gWR0CXrbB5X2dvdX2UKGgGaAloD0MIDyvc8pEYY0CUhpRSlGgVTegDaBZHQJew3FNtZV51fZQoaAZoCWgPQwiaP6a16XFgQJSGlFKUaBVN6ANoFkdAl7Eeoo/iYXV9lChoBmgJaA9DCNzWFp6XO2VAlIaUUpRoFU3oA2gWR0CXsyotL+PzdX2UKGgGaAloD0MIls0cktqFYkCUhpRSlGgVTegDaBZHQJe5X0+TvAp1fZQoaAZoCWgPQwi8ehUZnUlkQJSGlFKUaBVN6ANoFkdAl9PJm/WUbHV9lChoBmgJaA9DCJQUWADTi2BAlIaUUpRoFU3oA2gWR0CX1kOTq0MPdX2UKGgGaAloD0MIdbFppZB8ZUCUhpRSlGgVTegDaBZHQJfcK8kD6nB1fZQoaAZoCWgPQwhdT3RdeOBiQJSGlFKUaBVN6ANoFkdAl93yj1wo9nV9lChoBmgJaA9DCMLZrWUyjmRAlIaUUpRoFU3oA2gWR0CX3pW7OE/TdX2UKGgGaAloD0MIlbpkHCMbYkCUhpRSlGgVTegDaBZHQJffNJvo/zJ1fZQoaAZoCWgPQwg4vvbMkgZlQJSGlFKUaBVN6ANoFkdAl+qgyRB/qnV9lChoBmgJaA9DCHO9baZCwGRAlIaUUpRoFU3oA2gWR0CX7Gn+hoM8dX2UKGgGaAloD0MImpSCbi8cZECUhpRSlGgVTegDaBZHQJftMona37V1fZQoaAZoCWgPQwgXg4dp3xJfQJSGlFKUaBVN6ANoFkdAl+2MMI/qxHV9lChoBmgJaA9DCN9qnbgcyV9AlIaUUpRoFU3oA2gWR0CX7xOHnEEUdX2UKGgGaAloD0MIFLTJ4ROgbECUhpRSlGgVTRwDaBZHQJfxK8oQWep1fZQoaAZoCWgPQwgYzF8hsx5wQJSGlFKUaBVNgwJoFkdAl/R29tdiUnV9lChoBmgJaA9DCK00KQVd7mBAlIaUUpRoFU3oA2gWR0CX93NQCSzPdX2UKGgGaAloD0MII9qOqbuMY0CUhpRSlGgVTegDaBZHQJf6hj5Kvmp1fZQoaAZoCWgPQwiHo6t0dxthQJSGlFKUaBVN6ANoFkdAl/0OMyad+XV9lChoBmgJaA9DCJ2E0hcCJnBAlIaUUpRoFU1tAmgWR0CX/f580DU3dX2UKGgGaAloD0MINLkYA+vzYUCUhpRSlGgVTegDaBZHQJgF4HbAUL51fZQoaAZoCWgPQwjfUzntqZFtQJSGlFKUaBVN6QJoFkdAmAYtorWiDnV9lChoBmgJaA9DCLLYJhUN0mJAlIaUUpRoFU3oA2gWR0CYH943m3fAdX2UKGgGaAloD0MIQPhQoiVDZUCUhpRSlGgVTegDaBZHQJgl7tXxOL11fZQoaAZoCWgPQwhsskY9RI9hQJSGlFKUaBVN6ANoFkdAmCfKQ3gk1XV9lChoBmgJaA9DCD6zJEDNh2FAlIaUUpRoFU3oA2gWR0CYN1/GVAzIdX2UKGgGaAloD0MIHM2Rld+MZ0CUhpRSlGgVTegDaBZHQJg6QzoEB8x1fZQoaAZoCWgPQwivCtRi8ERkQJSGlFKUaBVN6ANoFkdAmDuDlDF6zHV9lChoBmgJaA9DCOvjoe/uN2JAlIaUUpRoFU3oA2gWR0CYPAQoCuEFdX2UKGgGaAloD0MIexSuR2GAZECUhpRSlGgVTegDaBZHQJg+fndO6/Z1fZQoaAZoCWgPQwiqDrkZ7lhkQJSGlFKUaBVN6ANoFkdAmEGDbSJCSnV9lChoBmgJaA9DCIvCLoqecmdAlIaUUpRoFU3oA2gWR0CYRioqkM1CdX2UKGgGaAloD0MIFqHYCprvXUCUhpRSlGgVTegDaBZHQJhKTuPV/c51fZQoaAZoCWgPQwiU3czox0NgQJSGlFKUaBVN6ANoFkdAmE52wqy4WnV9lChoBmgJaA9DCJKx2vy/cGFAlIaUUpRoFU3oA2gWR0CYUQfe1rqMdX2UKGgGaAloD0MIZaiKqfRHZ0CUhpRSlGgVTegDaBZHQJhRpmnO0LN1fZQoaAZoCWgPQwgdjq7S3RRjQJSGlFKUaBVN6ANoFkdAmFYzOLR8dHV9lChoBmgJaA9DCIJTH0je+WBAlIaUUpRoFU3oA2gWR0CYVl3u/k/9dX2UKGgGaAloD0MIn3QiwVR8ZUCUhpRSlGgVTegDaBZHQJhuEcNpdrx1fZQoaAZoCWgPQwhH6Gfq9Z1kQJSGlFKUaBVN6ANoFkdAmHWxKYiPhnV9lChoBmgJaA9DCKev52uWCGhAlIaUUpRoFU3oA2gWR0CYeBLIxQBQdX2UKGgGaAloD0MIY2TJHMs2Y0CUhpRSlGgVTegDaBZHQJiGRKpT/AF1fZQoaAZoCWgPQwizXDY656xdQJSGlFKUaBVN6ANoFkdAmIglPi1iOXV9lChoBmgJaA9DCFOSdTg6OWRAlIaUUpRoFU3oA2gWR0CYiPkzoEB9dX2UKGgGaAloD0MIBkZe1sTjZECUhpRSlGgVTegDaBZHQJiJWHRCx/x1fZQoaAZoCWgPQwgAVkeOdIBmQJSGlFKUaBVN6ANoFkdAmIr1uejEenV9lChoBmgJaA9DCNdOlITE2GBAlIaUUpRoFU3oA2gWR0CYjSngpBomdX2UKGgGaAloD0MIF56Xig0hZUCUhpRSlGgVTegDaBZHQJiQt2s7uD11fZQoaAZoCWgPQwjjpZvEoANgQJSGlFKUaBVN6ANoFkdAmJQuJpFkQXV9lChoBmgJaA9DCC+lLhnHfGFAlIaUUpRoFU3oA2gWR0CYl7adMCcPdX2UKGgGaAloD0MIfQiqRi94ZkCUhpRSlGgVTegDaBZHQJiZ6uU2UB51fZQoaAZoCWgPQwhrY+yEF91lQJSGlFKUaBVN6ANoFkdAmJqf2Cdz4nV9lChoBmgJaA9DCHQkl/8QMGNAlIaUUpRoFU3oA2gWR0CYoBUpNKywdX2UKGgGaAloD0MIPxpOmRuQZUCUhpRSlGgVTegDaBZHQJigSbPQfIV1fZQoaAZoCWgPQwiRuTKotiZoQJSGlFKUaBVN6ANoFkdAmL1va6BiC3V9lChoBmgJaA9DCGbAWUoWNmNAlIaUUpRoFU3oA2gWR0CYwxXmvGIbdX2UKGgGaAloD0MIs5lDUgtYX0CUhpRSlGgVTegDaBZHQJjEyX0Gu9x1fZQoaAZoCWgPQwjjF15J8l9mQJSGlFKUaBVN6ANoFkdAmNHztXxOL3V9lChoBmgJaA9DCD1IT5FD1l9AlIaUUpRoFU3oA2gWR0CY09Zh8YygdX2UKGgGaAloD0MIHxDoTFq8YECUhpRSlGgVTegDaBZHQJjUoFJQLux1fZQoaAZoCWgPQwgNF7mnq8RhQJSGlFKUaBVN6ANoFkdAmNT5kPMB63V9lChoBmgJaA9DCAKAY8+ekGRAlIaUUpRoFU3oA2gWR0CY1opmmLtNdX2UKGgGaAloD0MIIjgu46Y7ZUCUhpRSlGgVTegDaBZHQJjYlbcGkep1fZQoaAZoCWgPQwgrL/mf/LxkQJSGlFKUaBVN6ANoFkdAmNyXrpqynnV9lChoBmgJaA9DCFHZsKYyh2ZAlIaUUpRoFU3oA2gWR0CY4SSThYNidX2UKGgGaAloD0MIC5krg+qmYkCUhpRSlGgVTegDaBZHQJjmKZCv5gx1fZQoaAZoCWgPQwj8/zhhwmpmQJSGlFKUaBVN6ANoFkdAmOlbWVeKK3V9lChoBmgJaA9DCLpOIy2VIWJAlIaUUpRoFU3oA2gWR0CY6kwn6VMVdX2UKGgGaAloD0MIach4lMopZECUhpRSlGgVTegDaBZHQJjv9WQwK0F1fZQoaAZoCWgPQwjL9baZCpBgQJSGlFKUaBVN6ANoFkdAmPArgbZOBXV9lChoBmgJaA9DCHVyhuKOLmRAlIaUUpRoFU3oA2gWR0CY9X99MK1HdX2UKGgGaAloD0MIX7hzYaS9RECUhpRSlGgVS8VoFkdAmQ16OtGNJnV9lChoBmgJaA9DCGSvd388fmFAlIaUUpRoFU3oA2gWR0CZDmd56dDqdX2UKGgGaAloD0MI41KVtriXZECUhpRSlGgVTegDaBZHQJkQJKoQ4CJ1fZQoaAZoCWgPQwhjR+NQP9xwQJSGlFKUaBVNRQNoFkdAmRepK8L8aXV9lChoBmgJaA9DCG07bY0IdV5AlIaUUpRoFU3oA2gWR0CZIb0Q9RrKdX2UKGgGaAloD0MIJclzfR+pZ0CUhpRSlGgVTegDaBZHQJkkZIRRMvh1fZQoaAZoCWgPQwgib7n6sUZXQJSGlFKUaBVN6ANoFkdAmSS8IVuaW3V9lChoBmgJaA9DCCtNSkG3MmhAlIaUUpRoFU3oA2gWR0CZJj5cC5mRdX2UKGgGaAloD0MITbwDPOmbZkCUhpRSlGgVTegDaBZHQJkoR2dNFjN1fZQoaAZoCWgPQwhTBaOSOoxkQJSGlFKUaBVN6ANoFkdAmSuuW4Vh1HV9lChoBmgJaA9DCJYkz/X9d2NAlIaUUpRoFU3oA2gWR0CZLvFPznRtdX2UKGgGaAloD0MIyR6hZkilZkCUhpRSlGgVTegDaBZHQJkyOKqGUOd1fZQoaAZoCWgPQwi45o7+l+1jQJSGlFKUaBVN6ANoFkdAmTRFDOTq0XV9lChoBmgJaA9DCH8XtmYr+mZAlIaUUpRoFU3oA2gWR0CZNPQyhzvJdX2UKGgGaAloD0MIPGu3XWieHECUhpRSlGgVS85oFkdAmTXcgyM1j3V9lChoBmgJaA9DCDxLkBFQVmZAlIaUUpRoFU3oA2gWR0CZPClvqC6IdX2UKGgGaAloD0MI36gVpi/bcECUhpRSlGgVTQcCaBZHQJk8vv1DjR51fZQoaAZoCWgPQwjqymd5nlRiQJSGlFKUaBVN6ANoFkdAmULIKMNtqHVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
GEmodel1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8c63a9f9ab91926f388a10b703c48381e520942fbf8ddb7ae2b57830d4d3eb7
|
3 |
+
size 87929
|
GEmodel1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db0a0d14cef024d768e497d748910f3fe6b2d95bc75aa5d85df8b3bce38bc94e
|
3 |
+
size 43393
|
GEmodel1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
GEmodel1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 258.53 +/- 15.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30acae3550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30acae35e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30acae3670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30acae3700>", "_build": "<function ActorCriticPolicy._build at 0x7f30acae3790>", "forward": "<function ActorCriticPolicy.forward at 0x7f30acae3820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30acae38b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30acae3940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f30acae39d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30acae3a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30acae3af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30acae3b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30acae0cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678692110511186983, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb15jy4Rrq5ShOQuU3myLT2j9G5gkOqOAAAgD8AAIA/5lyDvfaEP7oGpIW7DHJgODSRo7oCbcs4AACAPwAAgD8zDfW8ds0TvAESDDyWarA8eBluPSp5kb0AAIA/AACAP03Vdz1cbye67gKKNtYwrDE5Mik7SLiltQAAgD8AAIA/QPnEPbxvhj8bWuM9BZecvpNz9T1rIRo9AAAAAAAAAABmJpO6XFZnvLYMgb1c6JS8amiJvX8joL4AAIA/AACAP43tl732XEC6m6pyOYkQhTIEL2S7SlSNuAAAgD8AAIA/AFB8uykARLo+Mqs7pK5aOK4mojq2uYq4AACAPwAAgD+zuEG9XNdPuvjXajpe7fY0HV+iu3YBiLkAAIA/AACAP82r8DzDnWG69KjBOpOiqjW0/Si7npfjuQAAgD8AAIA/5pQXvcNRd7o/vCM5rxMfNPWhqTrJej+4AACAPwAAgD+AhRW99nxouoUKxzsH64s2zIlXuwJkiDUAAIA/AACAP03GeT2kEnG7ByiFvBqVajyFwcC89nRKPQAAgD8AAIA/miTwvCnwaLp1xXM6CaJNtJtSkjmvuI65AACAPwAAgD9mKlK9nnjsPlZZpT1wK62+grg/vdAHYz0AAAAAAAAAAEDoCD5sjJE+qhshvY+MaL5Ntfs8QFHavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh/vIrUm5YkCUhpRSlIwBbJRN6AOMAXSUR0CXjMVD8cdYdX2UKGgGaAloD0MIK4arA6CvZUCUhpRSlGgVTegDaBZHQJePK+23KCB1fZQoaAZoCWgPQwga+5KNB+VnQJSGlFKUaBVN6ANoFkdAl4/+yeI2wXV9lChoBmgJaA9DCNiDSfHxBGZAlIaUUpRoFU3oA2gWR0CXkL2DQJHBdX2UKGgGaAloD0MICr/Uz1vDcECUhpRSlGgVTdUDaBZHQJefD9CNS611fZQoaAZoCWgPQwijBP2FngxmQJSGlFKUaBVN6ANoFkdAl6DhGpda+3V9lChoBmgJaA9DCHLdlPLaPGBAlIaUUpRoFU3oA2gWR0CXocIeHSF5dX2UKGgGaAloD0MIMV7zqk6bY0CUhpRSlGgVTegDaBZHQJeiJSgoPTZ1fZQoaAZoCWgPQwiBW3fz1A1iQJSGlFKUaBVN6ANoFkdAl6P5C0F8onV9lChoBmgJaA9DCGpOXmSCdmdAlIaUUpRoFU3oA2gWR0CXrbB5X2dvdX2UKGgGaAloD0MIDyvc8pEYY0CUhpRSlGgVTegDaBZHQJew3FNtZV51fZQoaAZoCWgPQwiaP6a16XFgQJSGlFKUaBVN6ANoFkdAl7Eeoo/iYXV9lChoBmgJaA9DCNzWFp6XO2VAlIaUUpRoFU3oA2gWR0CXsyotL+PzdX2UKGgGaAloD0MIls0cktqFYkCUhpRSlGgVTegDaBZHQJe5X0+TvAp1fZQoaAZoCWgPQwi8ehUZnUlkQJSGlFKUaBVN6ANoFkdAl9PJm/WUbHV9lChoBmgJaA9DCJQUWADTi2BAlIaUUpRoFU3oA2gWR0CX1kOTq0MPdX2UKGgGaAloD0MIdbFppZB8ZUCUhpRSlGgVTegDaBZHQJfcK8kD6nB1fZQoaAZoCWgPQwhdT3RdeOBiQJSGlFKUaBVN6ANoFkdAl93yj1wo9nV9lChoBmgJaA9DCMLZrWUyjmRAlIaUUpRoFU3oA2gWR0CX3pW7OE/TdX2UKGgGaAloD0MIlbpkHCMbYkCUhpRSlGgVTegDaBZHQJffNJvo/zJ1fZQoaAZoCWgPQwg4vvbMkgZlQJSGlFKUaBVN6ANoFkdAl+qgyRB/qnV9lChoBmgJaA9DCHO9baZCwGRAlIaUUpRoFU3oA2gWR0CX7Gn+hoM8dX2UKGgGaAloD0MImpSCbi8cZECUhpRSlGgVTegDaBZHQJftMona37V1fZQoaAZoCWgPQwgXg4dp3xJfQJSGlFKUaBVN6ANoFkdAl+2MMI/qxHV9lChoBmgJaA9DCN9qnbgcyV9AlIaUUpRoFU3oA2gWR0CX7xOHnEEUdX2UKGgGaAloD0MIFLTJ4ROgbECUhpRSlGgVTRwDaBZHQJfxK8oQWep1fZQoaAZoCWgPQwgYzF8hsx5wQJSGlFKUaBVNgwJoFkdAl/R29tdiUnV9lChoBmgJaA9DCK00KQVd7mBAlIaUUpRoFU3oA2gWR0CX93NQCSzPdX2UKGgGaAloD0MII9qOqbuMY0CUhpRSlGgVTegDaBZHQJf6hj5Kvmp1fZQoaAZoCWgPQwiHo6t0dxthQJSGlFKUaBVN6ANoFkdAl/0OMyad+XV9lChoBmgJaA9DCJ2E0hcCJnBAlIaUUpRoFU1tAmgWR0CX/f580DU3dX2UKGgGaAloD0MINLkYA+vzYUCUhpRSlGgVTegDaBZHQJgF4HbAUL51fZQoaAZoCWgPQwjfUzntqZFtQJSGlFKUaBVN6QJoFkdAmAYtorWiDnV9lChoBmgJaA9DCLLYJhUN0mJAlIaUUpRoFU3oA2gWR0CYH943m3fAdX2UKGgGaAloD0MIQPhQoiVDZUCUhpRSlGgVTegDaBZHQJgl7tXxOL11fZQoaAZoCWgPQwhsskY9RI9hQJSGlFKUaBVN6ANoFkdAmCfKQ3gk1XV9lChoBmgJaA9DCD6zJEDNh2FAlIaUUpRoFU3oA2gWR0CYN1/GVAzIdX2UKGgGaAloD0MIHM2Rld+MZ0CUhpRSlGgVTegDaBZHQJg6QzoEB8x1fZQoaAZoCWgPQwivCtRi8ERkQJSGlFKUaBVN6ANoFkdAmDuDlDF6zHV9lChoBmgJaA9DCOvjoe/uN2JAlIaUUpRoFU3oA2gWR0CYPAQoCuEFdX2UKGgGaAloD0MIexSuR2GAZECUhpRSlGgVTegDaBZHQJg+fndO6/Z1fZQoaAZoCWgPQwiqDrkZ7lhkQJSGlFKUaBVN6ANoFkdAmEGDbSJCSnV9lChoBmgJaA9DCIvCLoqecmdAlIaUUpRoFU3oA2gWR0CYRioqkM1CdX2UKGgGaAloD0MIFqHYCprvXUCUhpRSlGgVTegDaBZHQJhKTuPV/c51fZQoaAZoCWgPQwiU3czox0NgQJSGlFKUaBVN6ANoFkdAmE52wqy4WnV9lChoBmgJaA9DCJKx2vy/cGFAlIaUUpRoFU3oA2gWR0CYUQfe1rqMdX2UKGgGaAloD0MIZaiKqfRHZ0CUhpRSlGgVTegDaBZHQJhRpmnO0LN1fZQoaAZoCWgPQwgdjq7S3RRjQJSGlFKUaBVN6ANoFkdAmFYzOLR8dHV9lChoBmgJaA9DCIJTH0je+WBAlIaUUpRoFU3oA2gWR0CYVl3u/k/9dX2UKGgGaAloD0MIn3QiwVR8ZUCUhpRSlGgVTegDaBZHQJhuEcNpdrx1fZQoaAZoCWgPQwhH6Gfq9Z1kQJSGlFKUaBVN6ANoFkdAmHWxKYiPhnV9lChoBmgJaA9DCKev52uWCGhAlIaUUpRoFU3oA2gWR0CYeBLIxQBQdX2UKGgGaAloD0MIY2TJHMs2Y0CUhpRSlGgVTegDaBZHQJiGRKpT/AF1fZQoaAZoCWgPQwizXDY656xdQJSGlFKUaBVN6ANoFkdAmIglPi1iOXV9lChoBmgJaA9DCFOSdTg6OWRAlIaUUpRoFU3oA2gWR0CYiPkzoEB9dX2UKGgGaAloD0MIBkZe1sTjZECUhpRSlGgVTegDaBZHQJiJWHRCx/x1fZQoaAZoCWgPQwgAVkeOdIBmQJSGlFKUaBVN6ANoFkdAmIr1uejEenV9lChoBmgJaA9DCNdOlITE2GBAlIaUUpRoFU3oA2gWR0CYjSngpBomdX2UKGgGaAloD0MIF56Xig0hZUCUhpRSlGgVTegDaBZHQJiQt2s7uD11fZQoaAZoCWgPQwjjpZvEoANgQJSGlFKUaBVN6ANoFkdAmJQuJpFkQXV9lChoBmgJaA9DCC+lLhnHfGFAlIaUUpRoFU3oA2gWR0CYl7adMCcPdX2UKGgGaAloD0MIfQiqRi94ZkCUhpRSlGgVTegDaBZHQJiZ6uU2UB51fZQoaAZoCWgPQwhrY+yEF91lQJSGlFKUaBVN6ANoFkdAmJqf2Cdz4nV9lChoBmgJaA9DCHQkl/8QMGNAlIaUUpRoFU3oA2gWR0CYoBUpNKywdX2UKGgGaAloD0MIPxpOmRuQZUCUhpRSlGgVTegDaBZHQJigSbPQfIV1fZQoaAZoCWgPQwiRuTKotiZoQJSGlFKUaBVN6ANoFkdAmL1va6BiC3V9lChoBmgJaA9DCGbAWUoWNmNAlIaUUpRoFU3oA2gWR0CYwxXmvGIbdX2UKGgGaAloD0MIs5lDUgtYX0CUhpRSlGgVTegDaBZHQJjEyX0Gu9x1fZQoaAZoCWgPQwjjF15J8l9mQJSGlFKUaBVN6ANoFkdAmNHztXxOL3V9lChoBmgJaA9DCD1IT5FD1l9AlIaUUpRoFU3oA2gWR0CY09Zh8YygdX2UKGgGaAloD0MIHxDoTFq8YECUhpRSlGgVTegDaBZHQJjUoFJQLux1fZQoaAZoCWgPQwgNF7mnq8RhQJSGlFKUaBVN6ANoFkdAmNT5kPMB63V9lChoBmgJaA9DCAKAY8+ekGRAlIaUUpRoFU3oA2gWR0CY1opmmLtNdX2UKGgGaAloD0MIIjgu46Y7ZUCUhpRSlGgVTegDaBZHQJjYlbcGkep1fZQoaAZoCWgPQwgrL/mf/LxkQJSGlFKUaBVN6ANoFkdAmNyXrpqynnV9lChoBmgJaA9DCFHZsKYyh2ZAlIaUUpRoFU3oA2gWR0CY4SSThYNidX2UKGgGaAloD0MIC5krg+qmYkCUhpRSlGgVTegDaBZHQJjmKZCv5gx1fZQoaAZoCWgPQwj8/zhhwmpmQJSGlFKUaBVN6ANoFkdAmOlbWVeKK3V9lChoBmgJaA9DCLpOIy2VIWJAlIaUUpRoFU3oA2gWR0CY6kwn6VMVdX2UKGgGaAloD0MIach4lMopZECUhpRSlGgVTegDaBZHQJjv9WQwK0F1fZQoaAZoCWgPQwjL9baZCpBgQJSGlFKUaBVN6ANoFkdAmPArgbZOBXV9lChoBmgJaA9DCHVyhuKOLmRAlIaUUpRoFU3oA2gWR0CY9X99MK1HdX2UKGgGaAloD0MIX7hzYaS9RECUhpRSlGgVS8VoFkdAmQ16OtGNJnV9lChoBmgJaA9DCGSvd388fmFAlIaUUpRoFU3oA2gWR0CZDmd56dDqdX2UKGgGaAloD0MI41KVtriXZECUhpRSlGgVTegDaBZHQJkQJKoQ4CJ1fZQoaAZoCWgPQwhjR+NQP9xwQJSGlFKUaBVNRQNoFkdAmRepK8L8aXV9lChoBmgJaA9DCG07bY0IdV5AlIaUUpRoFU3oA2gWR0CZIb0Q9RrKdX2UKGgGaAloD0MIJclzfR+pZ0CUhpRSlGgVTegDaBZHQJkkZIRRMvh1fZQoaAZoCWgPQwgib7n6sUZXQJSGlFKUaBVN6ANoFkdAmSS8IVuaW3V9lChoBmgJaA9DCCtNSkG3MmhAlIaUUpRoFU3oA2gWR0CZJj5cC5mRdX2UKGgGaAloD0MITbwDPOmbZkCUhpRSlGgVTegDaBZHQJkoR2dNFjN1fZQoaAZoCWgPQwhTBaOSOoxkQJSGlFKUaBVN6ANoFkdAmSuuW4Vh1HV9lChoBmgJaA9DCJYkz/X9d2NAlIaUUpRoFU3oA2gWR0CZLvFPznRtdX2UKGgGaAloD0MIyR6hZkilZkCUhpRSlGgVTegDaBZHQJkyOKqGUOd1fZQoaAZoCWgPQwi45o7+l+1jQJSGlFKUaBVN6ANoFkdAmTRFDOTq0XV9lChoBmgJaA9DCH8XtmYr+mZAlIaUUpRoFU3oA2gWR0CZNPQyhzvJdX2UKGgGaAloD0MIPGu3XWieHECUhpRSlGgVS85oFkdAmTXcgyM1j3V9lChoBmgJaA9DCDxLkBFQVmZAlIaUUpRoFU3oA2gWR0CZPClvqC6IdX2UKGgGaAloD0MI36gVpi/bcECUhpRSlGgVTQcCaBZHQJk8vv1DjR51fZQoaAZoCWgPQwjqymd5nlRiQJSGlFKUaBVN6ANoFkdAmULIKMNtqHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (215 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 258.5326942637062, "std_reward": 15.274877150972356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T08:03:03.908365"}
|