GillesEverling commited on
Commit
5251715
1 Parent(s): a926eea

Default model

Browse files
GEmodel1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98ea61854340b12f352735d5df32ed09efe963801c2465f4c627d67425f62c98
3
+ size 147429
GEmodel1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
GEmodel1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30acae3550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30acae35e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30acae3670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30acae3700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f30acae3790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f30acae3820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30acae38b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30acae3940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f30acae39d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30acae3a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30acae3af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30acae3b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f30acae0cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678692110511186983,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb15jy4Rrq5ShOQuU3myLT2j9G5gkOqOAAAgD8AAIA/5lyDvfaEP7oGpIW7DHJgODSRo7oCbcs4AACAPwAAgD8zDfW8ds0TvAESDDyWarA8eBluPSp5kb0AAIA/AACAP03Vdz1cbye67gKKNtYwrDE5Mik7SLiltQAAgD8AAIA/QPnEPbxvhj8bWuM9BZecvpNz9T1rIRo9AAAAAAAAAABmJpO6XFZnvLYMgb1c6JS8amiJvX8joL4AAIA/AACAP43tl732XEC6m6pyOYkQhTIEL2S7SlSNuAAAgD8AAIA/AFB8uykARLo+Mqs7pK5aOK4mojq2uYq4AACAPwAAgD+zuEG9XNdPuvjXajpe7fY0HV+iu3YBiLkAAIA/AACAP82r8DzDnWG69KjBOpOiqjW0/Si7npfjuQAAgD8AAIA/5pQXvcNRd7o/vCM5rxMfNPWhqTrJej+4AACAPwAAgD+AhRW99nxouoUKxzsH64s2zIlXuwJkiDUAAIA/AACAP03GeT2kEnG7ByiFvBqVajyFwcC89nRKPQAAgD8AAIA/miTwvCnwaLp1xXM6CaJNtJtSkjmvuI65AACAPwAAgD9mKlK9nnjsPlZZpT1wK62+grg/vdAHYz0AAAAAAAAAAEDoCD5sjJE+qhshvY+MaL5Ntfs8QFHavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh/vIrUm5YkCUhpRSlIwBbJRN6AOMAXSUR0CXjMVD8cdYdX2UKGgGaAloD0MIK4arA6CvZUCUhpRSlGgVTegDaBZHQJePK+23KCB1fZQoaAZoCWgPQwga+5KNB+VnQJSGlFKUaBVN6ANoFkdAl4/+yeI2wXV9lChoBmgJaA9DCNiDSfHxBGZAlIaUUpRoFU3oA2gWR0CXkL2DQJHBdX2UKGgGaAloD0MICr/Uz1vDcECUhpRSlGgVTdUDaBZHQJefD9CNS611fZQoaAZoCWgPQwijBP2FngxmQJSGlFKUaBVN6ANoFkdAl6DhGpda+3V9lChoBmgJaA9DCHLdlPLaPGBAlIaUUpRoFU3oA2gWR0CXocIeHSF5dX2UKGgGaAloD0MIMV7zqk6bY0CUhpRSlGgVTegDaBZHQJeiJSgoPTZ1fZQoaAZoCWgPQwiBW3fz1A1iQJSGlFKUaBVN6ANoFkdAl6P5C0F8onV9lChoBmgJaA9DCGpOXmSCdmdAlIaUUpRoFU3oA2gWR0CXrbB5X2dvdX2UKGgGaAloD0MIDyvc8pEYY0CUhpRSlGgVTegDaBZHQJew3FNtZV51fZQoaAZoCWgPQwiaP6a16XFgQJSGlFKUaBVN6ANoFkdAl7Eeoo/iYXV9lChoBmgJaA9DCNzWFp6XO2VAlIaUUpRoFU3oA2gWR0CXsyotL+PzdX2UKGgGaAloD0MIls0cktqFYkCUhpRSlGgVTegDaBZHQJe5X0+TvAp1fZQoaAZoCWgPQwi8ehUZnUlkQJSGlFKUaBVN6ANoFkdAl9PJm/WUbHV9lChoBmgJaA9DCJQUWADTi2BAlIaUUpRoFU3oA2gWR0CX1kOTq0MPdX2UKGgGaAloD0MIdbFppZB8ZUCUhpRSlGgVTegDaBZHQJfcK8kD6nB1fZQoaAZoCWgPQwhdT3RdeOBiQJSGlFKUaBVN6ANoFkdAl93yj1wo9nV9lChoBmgJaA9DCMLZrWUyjmRAlIaUUpRoFU3oA2gWR0CX3pW7OE/TdX2UKGgGaAloD0MIlbpkHCMbYkCUhpRSlGgVTegDaBZHQJffNJvo/zJ1fZQoaAZoCWgPQwg4vvbMkgZlQJSGlFKUaBVN6ANoFkdAl+qgyRB/qnV9lChoBmgJaA9DCHO9baZCwGRAlIaUUpRoFU3oA2gWR0CX7Gn+hoM8dX2UKGgGaAloD0MImpSCbi8cZECUhpRSlGgVTegDaBZHQJftMona37V1fZQoaAZoCWgPQwgXg4dp3xJfQJSGlFKUaBVN6ANoFkdAl+2MMI/qxHV9lChoBmgJaA9DCN9qnbgcyV9AlIaUUpRoFU3oA2gWR0CX7xOHnEEUdX2UKGgGaAloD0MIFLTJ4ROgbECUhpRSlGgVTRwDaBZHQJfxK8oQWep1fZQoaAZoCWgPQwgYzF8hsx5wQJSGlFKUaBVNgwJoFkdAl/R29tdiUnV9lChoBmgJaA9DCK00KQVd7mBAlIaUUpRoFU3oA2gWR0CX93NQCSzPdX2UKGgGaAloD0MII9qOqbuMY0CUhpRSlGgVTegDaBZHQJf6hj5Kvmp1fZQoaAZoCWgPQwiHo6t0dxthQJSGlFKUaBVN6ANoFkdAl/0OMyad+XV9lChoBmgJaA9DCJ2E0hcCJnBAlIaUUpRoFU1tAmgWR0CX/f580DU3dX2UKGgGaAloD0MINLkYA+vzYUCUhpRSlGgVTegDaBZHQJgF4HbAUL51fZQoaAZoCWgPQwjfUzntqZFtQJSGlFKUaBVN6QJoFkdAmAYtorWiDnV9lChoBmgJaA9DCLLYJhUN0mJAlIaUUpRoFU3oA2gWR0CYH943m3fAdX2UKGgGaAloD0MIQPhQoiVDZUCUhpRSlGgVTegDaBZHQJgl7tXxOL11fZQoaAZoCWgPQwhsskY9RI9hQJSGlFKUaBVN6ANoFkdAmCfKQ3gk1XV9lChoBmgJaA9DCD6zJEDNh2FAlIaUUpRoFU3oA2gWR0CYN1/GVAzIdX2UKGgGaAloD0MIHM2Rld+MZ0CUhpRSlGgVTegDaBZHQJg6QzoEB8x1fZQoaAZoCWgPQwivCtRi8ERkQJSGlFKUaBVN6ANoFkdAmDuDlDF6zHV9lChoBmgJaA9DCOvjoe/uN2JAlIaUUpRoFU3oA2gWR0CYPAQoCuEFdX2UKGgGaAloD0MIexSuR2GAZECUhpRSlGgVTegDaBZHQJg+fndO6/Z1fZQoaAZoCWgPQwiqDrkZ7lhkQJSGlFKUaBVN6ANoFkdAmEGDbSJCSnV9lChoBmgJaA9DCIvCLoqecmdAlIaUUpRoFU3oA2gWR0CYRioqkM1CdX2UKGgGaAloD0MIFqHYCprvXUCUhpRSlGgVTegDaBZHQJhKTuPV/c51fZQoaAZoCWgPQwiU3czox0NgQJSGlFKUaBVN6ANoFkdAmE52wqy4WnV9lChoBmgJaA9DCJKx2vy/cGFAlIaUUpRoFU3oA2gWR0CYUQfe1rqMdX2UKGgGaAloD0MIZaiKqfRHZ0CUhpRSlGgVTegDaBZHQJhRpmnO0LN1fZQoaAZoCWgPQwgdjq7S3RRjQJSGlFKUaBVN6ANoFkdAmFYzOLR8dHV9lChoBmgJaA9DCIJTH0je+WBAlIaUUpRoFU3oA2gWR0CYVl3u/k/9dX2UKGgGaAloD0MIn3QiwVR8ZUCUhpRSlGgVTegDaBZHQJhuEcNpdrx1fZQoaAZoCWgPQwhH6Gfq9Z1kQJSGlFKUaBVN6ANoFkdAmHWxKYiPhnV9lChoBmgJaA9DCKev52uWCGhAlIaUUpRoFU3oA2gWR0CYeBLIxQBQdX2UKGgGaAloD0MIY2TJHMs2Y0CUhpRSlGgVTegDaBZHQJiGRKpT/AF1fZQoaAZoCWgPQwizXDY656xdQJSGlFKUaBVN6ANoFkdAmIglPi1iOXV9lChoBmgJaA9DCFOSdTg6OWRAlIaUUpRoFU3oA2gWR0CYiPkzoEB9dX2UKGgGaAloD0MIBkZe1sTjZECUhpRSlGgVTegDaBZHQJiJWHRCx/x1fZQoaAZoCWgPQwgAVkeOdIBmQJSGlFKUaBVN6ANoFkdAmIr1uejEenV9lChoBmgJaA9DCNdOlITE2GBAlIaUUpRoFU3oA2gWR0CYjSngpBomdX2UKGgGaAloD0MIF56Xig0hZUCUhpRSlGgVTegDaBZHQJiQt2s7uD11fZQoaAZoCWgPQwjjpZvEoANgQJSGlFKUaBVN6ANoFkdAmJQuJpFkQXV9lChoBmgJaA9DCC+lLhnHfGFAlIaUUpRoFU3oA2gWR0CYl7adMCcPdX2UKGgGaAloD0MIfQiqRi94ZkCUhpRSlGgVTegDaBZHQJiZ6uU2UB51fZQoaAZoCWgPQwhrY+yEF91lQJSGlFKUaBVN6ANoFkdAmJqf2Cdz4nV9lChoBmgJaA9DCHQkl/8QMGNAlIaUUpRoFU3oA2gWR0CYoBUpNKywdX2UKGgGaAloD0MIPxpOmRuQZUCUhpRSlGgVTegDaBZHQJigSbPQfIV1fZQoaAZoCWgPQwiRuTKotiZoQJSGlFKUaBVN6ANoFkdAmL1va6BiC3V9lChoBmgJaA9DCGbAWUoWNmNAlIaUUpRoFU3oA2gWR0CYwxXmvGIbdX2UKGgGaAloD0MIs5lDUgtYX0CUhpRSlGgVTegDaBZHQJjEyX0Gu9x1fZQoaAZoCWgPQwjjF15J8l9mQJSGlFKUaBVN6ANoFkdAmNHztXxOL3V9lChoBmgJaA9DCD1IT5FD1l9AlIaUUpRoFU3oA2gWR0CY09Zh8YygdX2UKGgGaAloD0MIHxDoTFq8YECUhpRSlGgVTegDaBZHQJjUoFJQLux1fZQoaAZoCWgPQwgNF7mnq8RhQJSGlFKUaBVN6ANoFkdAmNT5kPMB63V9lChoBmgJaA9DCAKAY8+ekGRAlIaUUpRoFU3oA2gWR0CY1opmmLtNdX2UKGgGaAloD0MIIjgu46Y7ZUCUhpRSlGgVTegDaBZHQJjYlbcGkep1fZQoaAZoCWgPQwgrL/mf/LxkQJSGlFKUaBVN6ANoFkdAmNyXrpqynnV9lChoBmgJaA9DCFHZsKYyh2ZAlIaUUpRoFU3oA2gWR0CY4SSThYNidX2UKGgGaAloD0MIC5krg+qmYkCUhpRSlGgVTegDaBZHQJjmKZCv5gx1fZQoaAZoCWgPQwj8/zhhwmpmQJSGlFKUaBVN6ANoFkdAmOlbWVeKK3V9lChoBmgJaA9DCLpOIy2VIWJAlIaUUpRoFU3oA2gWR0CY6kwn6VMVdX2UKGgGaAloD0MIach4lMopZECUhpRSlGgVTegDaBZHQJjv9WQwK0F1fZQoaAZoCWgPQwjL9baZCpBgQJSGlFKUaBVN6ANoFkdAmPArgbZOBXV9lChoBmgJaA9DCHVyhuKOLmRAlIaUUpRoFU3oA2gWR0CY9X99MK1HdX2UKGgGaAloD0MIX7hzYaS9RECUhpRSlGgVS8VoFkdAmQ16OtGNJnV9lChoBmgJaA9DCGSvd388fmFAlIaUUpRoFU3oA2gWR0CZDmd56dDqdX2UKGgGaAloD0MI41KVtriXZECUhpRSlGgVTegDaBZHQJkQJKoQ4CJ1fZQoaAZoCWgPQwhjR+NQP9xwQJSGlFKUaBVNRQNoFkdAmRepK8L8aXV9lChoBmgJaA9DCG07bY0IdV5AlIaUUpRoFU3oA2gWR0CZIb0Q9RrKdX2UKGgGaAloD0MIJclzfR+pZ0CUhpRSlGgVTegDaBZHQJkkZIRRMvh1fZQoaAZoCWgPQwgib7n6sUZXQJSGlFKUaBVN6ANoFkdAmSS8IVuaW3V9lChoBmgJaA9DCCtNSkG3MmhAlIaUUpRoFU3oA2gWR0CZJj5cC5mRdX2UKGgGaAloD0MITbwDPOmbZkCUhpRSlGgVTegDaBZHQJkoR2dNFjN1fZQoaAZoCWgPQwhTBaOSOoxkQJSGlFKUaBVN6ANoFkdAmSuuW4Vh1HV9lChoBmgJaA9DCJYkz/X9d2NAlIaUUpRoFU3oA2gWR0CZLvFPznRtdX2UKGgGaAloD0MIyR6hZkilZkCUhpRSlGgVTegDaBZHQJkyOKqGUOd1fZQoaAZoCWgPQwi45o7+l+1jQJSGlFKUaBVN6ANoFkdAmTRFDOTq0XV9lChoBmgJaA9DCH8XtmYr+mZAlIaUUpRoFU3oA2gWR0CZNPQyhzvJdX2UKGgGaAloD0MIPGu3XWieHECUhpRSlGgVS85oFkdAmTXcgyM1j3V9lChoBmgJaA9DCDxLkBFQVmZAlIaUUpRoFU3oA2gWR0CZPClvqC6IdX2UKGgGaAloD0MI36gVpi/bcECUhpRSlGgVTQcCaBZHQJk8vv1DjR51fZQoaAZoCWgPQwjqymd5nlRiQJSGlFKUaBVN6ANoFkdAmULIKMNtqHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
GEmodel1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c63a9f9ab91926f388a10b703c48381e520942fbf8ddb7ae2b57830d4d3eb7
3
+ size 87929
GEmodel1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db0a0d14cef024d768e497d748910f3fe6b2d95bc75aa5d85df8b3bce38bc94e
3
+ size 43393
GEmodel1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
GEmodel1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.53 +/- 15.27
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30acae3550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30acae35e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30acae3670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30acae3700>", "_build": "<function ActorCriticPolicy._build at 0x7f30acae3790>", "forward": "<function ActorCriticPolicy.forward at 0x7f30acae3820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30acae38b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30acae3940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f30acae39d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30acae3a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30acae3af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30acae3b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30acae0cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678692110511186983, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb15jy4Rrq5ShOQuU3myLT2j9G5gkOqOAAAgD8AAIA/5lyDvfaEP7oGpIW7DHJgODSRo7oCbcs4AACAPwAAgD8zDfW8ds0TvAESDDyWarA8eBluPSp5kb0AAIA/AACAP03Vdz1cbye67gKKNtYwrDE5Mik7SLiltQAAgD8AAIA/QPnEPbxvhj8bWuM9BZecvpNz9T1rIRo9AAAAAAAAAABmJpO6XFZnvLYMgb1c6JS8amiJvX8joL4AAIA/AACAP43tl732XEC6m6pyOYkQhTIEL2S7SlSNuAAAgD8AAIA/AFB8uykARLo+Mqs7pK5aOK4mojq2uYq4AACAPwAAgD+zuEG9XNdPuvjXajpe7fY0HV+iu3YBiLkAAIA/AACAP82r8DzDnWG69KjBOpOiqjW0/Si7npfjuQAAgD8AAIA/5pQXvcNRd7o/vCM5rxMfNPWhqTrJej+4AACAPwAAgD+AhRW99nxouoUKxzsH64s2zIlXuwJkiDUAAIA/AACAP03GeT2kEnG7ByiFvBqVajyFwcC89nRKPQAAgD8AAIA/miTwvCnwaLp1xXM6CaJNtJtSkjmvuI65AACAPwAAgD9mKlK9nnjsPlZZpT1wK62+grg/vdAHYz0AAAAAAAAAAEDoCD5sjJE+qhshvY+MaL5Ntfs8QFHavAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh/vIrUm5YkCUhpRSlIwBbJRN6AOMAXSUR0CXjMVD8cdYdX2UKGgGaAloD0MIK4arA6CvZUCUhpRSlGgVTegDaBZHQJePK+23KCB1fZQoaAZoCWgPQwga+5KNB+VnQJSGlFKUaBVN6ANoFkdAl4/+yeI2wXV9lChoBmgJaA9DCNiDSfHxBGZAlIaUUpRoFU3oA2gWR0CXkL2DQJHBdX2UKGgGaAloD0MICr/Uz1vDcECUhpRSlGgVTdUDaBZHQJefD9CNS611fZQoaAZoCWgPQwijBP2FngxmQJSGlFKUaBVN6ANoFkdAl6DhGpda+3V9lChoBmgJaA9DCHLdlPLaPGBAlIaUUpRoFU3oA2gWR0CXocIeHSF5dX2UKGgGaAloD0MIMV7zqk6bY0CUhpRSlGgVTegDaBZHQJeiJSgoPTZ1fZQoaAZoCWgPQwiBW3fz1A1iQJSGlFKUaBVN6ANoFkdAl6P5C0F8onV9lChoBmgJaA9DCGpOXmSCdmdAlIaUUpRoFU3oA2gWR0CXrbB5X2dvdX2UKGgGaAloD0MIDyvc8pEYY0CUhpRSlGgVTegDaBZHQJew3FNtZV51fZQoaAZoCWgPQwiaP6a16XFgQJSGlFKUaBVN6ANoFkdAl7Eeoo/iYXV9lChoBmgJaA9DCNzWFp6XO2VAlIaUUpRoFU3oA2gWR0CXsyotL+PzdX2UKGgGaAloD0MIls0cktqFYkCUhpRSlGgVTegDaBZHQJe5X0+TvAp1fZQoaAZoCWgPQwi8ehUZnUlkQJSGlFKUaBVN6ANoFkdAl9PJm/WUbHV9lChoBmgJaA9DCJQUWADTi2BAlIaUUpRoFU3oA2gWR0CX1kOTq0MPdX2UKGgGaAloD0MIdbFppZB8ZUCUhpRSlGgVTegDaBZHQJfcK8kD6nB1fZQoaAZoCWgPQwhdT3RdeOBiQJSGlFKUaBVN6ANoFkdAl93yj1wo9nV9lChoBmgJaA9DCMLZrWUyjmRAlIaUUpRoFU3oA2gWR0CX3pW7OE/TdX2UKGgGaAloD0MIlbpkHCMbYkCUhpRSlGgVTegDaBZHQJffNJvo/zJ1fZQoaAZoCWgPQwg4vvbMkgZlQJSGlFKUaBVN6ANoFkdAl+qgyRB/qnV9lChoBmgJaA9DCHO9baZCwGRAlIaUUpRoFU3oA2gWR0CX7Gn+hoM8dX2UKGgGaAloD0MImpSCbi8cZECUhpRSlGgVTegDaBZHQJftMona37V1fZQoaAZoCWgPQwgXg4dp3xJfQJSGlFKUaBVN6ANoFkdAl+2MMI/qxHV9lChoBmgJaA9DCN9qnbgcyV9AlIaUUpRoFU3oA2gWR0CX7xOHnEEUdX2UKGgGaAloD0MIFLTJ4ROgbECUhpRSlGgVTRwDaBZHQJfxK8oQWep1fZQoaAZoCWgPQwgYzF8hsx5wQJSGlFKUaBVNgwJoFkdAl/R29tdiUnV9lChoBmgJaA9DCK00KQVd7mBAlIaUUpRoFU3oA2gWR0CX93NQCSzPdX2UKGgGaAloD0MII9qOqbuMY0CUhpRSlGgVTegDaBZHQJf6hj5Kvmp1fZQoaAZoCWgPQwiHo6t0dxthQJSGlFKUaBVN6ANoFkdAl/0OMyad+XV9lChoBmgJaA9DCJ2E0hcCJnBAlIaUUpRoFU1tAmgWR0CX/f580DU3dX2UKGgGaAloD0MINLkYA+vzYUCUhpRSlGgVTegDaBZHQJgF4HbAUL51fZQoaAZoCWgPQwjfUzntqZFtQJSGlFKUaBVN6QJoFkdAmAYtorWiDnV9lChoBmgJaA9DCLLYJhUN0mJAlIaUUpRoFU3oA2gWR0CYH943m3fAdX2UKGgGaAloD0MIQPhQoiVDZUCUhpRSlGgVTegDaBZHQJgl7tXxOL11fZQoaAZoCWgPQwhsskY9RI9hQJSGlFKUaBVN6ANoFkdAmCfKQ3gk1XV9lChoBmgJaA9DCD6zJEDNh2FAlIaUUpRoFU3oA2gWR0CYN1/GVAzIdX2UKGgGaAloD0MIHM2Rld+MZ0CUhpRSlGgVTegDaBZHQJg6QzoEB8x1fZQoaAZoCWgPQwivCtRi8ERkQJSGlFKUaBVN6ANoFkdAmDuDlDF6zHV9lChoBmgJaA9DCOvjoe/uN2JAlIaUUpRoFU3oA2gWR0CYPAQoCuEFdX2UKGgGaAloD0MIexSuR2GAZECUhpRSlGgVTegDaBZHQJg+fndO6/Z1fZQoaAZoCWgPQwiqDrkZ7lhkQJSGlFKUaBVN6ANoFkdAmEGDbSJCSnV9lChoBmgJaA9DCIvCLoqecmdAlIaUUpRoFU3oA2gWR0CYRioqkM1CdX2UKGgGaAloD0MIFqHYCprvXUCUhpRSlGgVTegDaBZHQJhKTuPV/c51fZQoaAZoCWgPQwiU3czox0NgQJSGlFKUaBVN6ANoFkdAmE52wqy4WnV9lChoBmgJaA9DCJKx2vy/cGFAlIaUUpRoFU3oA2gWR0CYUQfe1rqMdX2UKGgGaAloD0MIZaiKqfRHZ0CUhpRSlGgVTegDaBZHQJhRpmnO0LN1fZQoaAZoCWgPQwgdjq7S3RRjQJSGlFKUaBVN6ANoFkdAmFYzOLR8dHV9lChoBmgJaA9DCIJTH0je+WBAlIaUUpRoFU3oA2gWR0CYVl3u/k/9dX2UKGgGaAloD0MIn3QiwVR8ZUCUhpRSlGgVTegDaBZHQJhuEcNpdrx1fZQoaAZoCWgPQwhH6Gfq9Z1kQJSGlFKUaBVN6ANoFkdAmHWxKYiPhnV9lChoBmgJaA9DCKev52uWCGhAlIaUUpRoFU3oA2gWR0CYeBLIxQBQdX2UKGgGaAloD0MIY2TJHMs2Y0CUhpRSlGgVTegDaBZHQJiGRKpT/AF1fZQoaAZoCWgPQwizXDY656xdQJSGlFKUaBVN6ANoFkdAmIglPi1iOXV9lChoBmgJaA9DCFOSdTg6OWRAlIaUUpRoFU3oA2gWR0CYiPkzoEB9dX2UKGgGaAloD0MIBkZe1sTjZECUhpRSlGgVTegDaBZHQJiJWHRCx/x1fZQoaAZoCWgPQwgAVkeOdIBmQJSGlFKUaBVN6ANoFkdAmIr1uejEenV9lChoBmgJaA9DCNdOlITE2GBAlIaUUpRoFU3oA2gWR0CYjSngpBomdX2UKGgGaAloD0MIF56Xig0hZUCUhpRSlGgVTegDaBZHQJiQt2s7uD11fZQoaAZoCWgPQwjjpZvEoANgQJSGlFKUaBVN6ANoFkdAmJQuJpFkQXV9lChoBmgJaA9DCC+lLhnHfGFAlIaUUpRoFU3oA2gWR0CYl7adMCcPdX2UKGgGaAloD0MIfQiqRi94ZkCUhpRSlGgVTegDaBZHQJiZ6uU2UB51fZQoaAZoCWgPQwhrY+yEF91lQJSGlFKUaBVN6ANoFkdAmJqf2Cdz4nV9lChoBmgJaA9DCHQkl/8QMGNAlIaUUpRoFU3oA2gWR0CYoBUpNKywdX2UKGgGaAloD0MIPxpOmRuQZUCUhpRSlGgVTegDaBZHQJigSbPQfIV1fZQoaAZoCWgPQwiRuTKotiZoQJSGlFKUaBVN6ANoFkdAmL1va6BiC3V9lChoBmgJaA9DCGbAWUoWNmNAlIaUUpRoFU3oA2gWR0CYwxXmvGIbdX2UKGgGaAloD0MIs5lDUgtYX0CUhpRSlGgVTegDaBZHQJjEyX0Gu9x1fZQoaAZoCWgPQwjjF15J8l9mQJSGlFKUaBVN6ANoFkdAmNHztXxOL3V9lChoBmgJaA9DCD1IT5FD1l9AlIaUUpRoFU3oA2gWR0CY09Zh8YygdX2UKGgGaAloD0MIHxDoTFq8YECUhpRSlGgVTegDaBZHQJjUoFJQLux1fZQoaAZoCWgPQwgNF7mnq8RhQJSGlFKUaBVN6ANoFkdAmNT5kPMB63V9lChoBmgJaA9DCAKAY8+ekGRAlIaUUpRoFU3oA2gWR0CY1opmmLtNdX2UKGgGaAloD0MIIjgu46Y7ZUCUhpRSlGgVTegDaBZHQJjYlbcGkep1fZQoaAZoCWgPQwgrL/mf/LxkQJSGlFKUaBVN6ANoFkdAmNyXrpqynnV9lChoBmgJaA9DCFHZsKYyh2ZAlIaUUpRoFU3oA2gWR0CY4SSThYNidX2UKGgGaAloD0MIC5krg+qmYkCUhpRSlGgVTegDaBZHQJjmKZCv5gx1fZQoaAZoCWgPQwj8/zhhwmpmQJSGlFKUaBVN6ANoFkdAmOlbWVeKK3V9lChoBmgJaA9DCLpOIy2VIWJAlIaUUpRoFU3oA2gWR0CY6kwn6VMVdX2UKGgGaAloD0MIach4lMopZECUhpRSlGgVTegDaBZHQJjv9WQwK0F1fZQoaAZoCWgPQwjL9baZCpBgQJSGlFKUaBVN6ANoFkdAmPArgbZOBXV9lChoBmgJaA9DCHVyhuKOLmRAlIaUUpRoFU3oA2gWR0CY9X99MK1HdX2UKGgGaAloD0MIX7hzYaS9RECUhpRSlGgVS8VoFkdAmQ16OtGNJnV9lChoBmgJaA9DCGSvd388fmFAlIaUUpRoFU3oA2gWR0CZDmd56dDqdX2UKGgGaAloD0MI41KVtriXZECUhpRSlGgVTegDaBZHQJkQJKoQ4CJ1fZQoaAZoCWgPQwhjR+NQP9xwQJSGlFKUaBVNRQNoFkdAmRepK8L8aXV9lChoBmgJaA9DCG07bY0IdV5AlIaUUpRoFU3oA2gWR0CZIb0Q9RrKdX2UKGgGaAloD0MIJclzfR+pZ0CUhpRSlGgVTegDaBZHQJkkZIRRMvh1fZQoaAZoCWgPQwgib7n6sUZXQJSGlFKUaBVN6ANoFkdAmSS8IVuaW3V9lChoBmgJaA9DCCtNSkG3MmhAlIaUUpRoFU3oA2gWR0CZJj5cC5mRdX2UKGgGaAloD0MITbwDPOmbZkCUhpRSlGgVTegDaBZHQJkoR2dNFjN1fZQoaAZoCWgPQwhTBaOSOoxkQJSGlFKUaBVN6ANoFkdAmSuuW4Vh1HV9lChoBmgJaA9DCJYkz/X9d2NAlIaUUpRoFU3oA2gWR0CZLvFPznRtdX2UKGgGaAloD0MIyR6hZkilZkCUhpRSlGgVTegDaBZHQJkyOKqGUOd1fZQoaAZoCWgPQwi45o7+l+1jQJSGlFKUaBVN6ANoFkdAmTRFDOTq0XV9lChoBmgJaA9DCH8XtmYr+mZAlIaUUpRoFU3oA2gWR0CZNPQyhzvJdX2UKGgGaAloD0MIPGu3XWieHECUhpRSlGgVS85oFkdAmTXcgyM1j3V9lChoBmgJaA9DCDxLkBFQVmZAlIaUUpRoFU3oA2gWR0CZPClvqC6IdX2UKGgGaAloD0MI36gVpi/bcECUhpRSlGgVTQcCaBZHQJk8vv1DjR51fZQoaAZoCWgPQwjqymd5nlRiQJSGlFKUaBVN6ANoFkdAmULIKMNtqHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (215 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.5326942637062, "std_reward": 15.274877150972356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T08:03:03.908365"}