GillesEverling
commited on
Commit
•
c4a03d3
1
Parent(s):
5251e0e
Upload PPO LunarLander-v2 trained agent v2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 259.28 +/- 68.13
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x73c750882700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x73c7508827a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x73c750882840>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x73c7508828e0>", "_build": "<function ActorCriticPolicy._build at 0x73c750882980>", "forward": "<function ActorCriticPolicy.forward at 0x73c750882a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x73c750882ac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x73c750882b60>", "_predict": "<function ActorCriticPolicy._predict at 0x73c750882c00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x73c750882ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x73c750882d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x73c750882de0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x73c750888b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712593624749172157, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaCBTzIEJ09g47svXeKZ750fXC9/JAKPQAAAAAAAAAAAAOgPG1qbT4uaDq+Tx1uvuoEM72OLTy9AAAAAAAAAACaycQ6eGiUPOZzcL2jIlS+8EmivUkWPD0AAAAAAAAAAKahFD4f4IY/Zm6DPhextr6AfQo+hRDQPQAAAAAAAAAAGjOJPWDNlT47Wri9oFmLvncri7yixLQ9AAAAAAAAAADmbSM9HTsLPjNclb2W7Fu+OYSYvObugTwAAAAAAAAAAGY/2T3bIuA+iwDGvbaiZr4g/dw77nLLvAAAAAAAAAAAGidWPtTLWj9Qpeq97GSPvsJ5DT58Bw6+AAAAAAAAAACz0B494U+mPhUN8LsrGYS+gmk3PSps6L0AAAAAAAAAAAAAk7i4srE/eihcui14m74A2A69LQ7SvAAAAAAAAAAATaxLPjdCdT/xi5k9esq3vob1dz5e/7q8AAAAAAAAAAAA6H+9PMOgP95Wgb6RPcC+RYshvm6xer4AAAAAAAAAAIA0lb3Yy6A/OkRxvmMRob6112y+XiVsvgAAAAAAAAAAJs8sPjnvST+f1Km9rsyevnQE2T1+u8K9AAAAAAAAAAAA5HC8MEHBPpIv+T3KsZm+lRqrPWCqoTwAAAAAAAAAAGaAdDyP5im6rot6tgkcNbGLn9e6rWKYNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA4kH+qBEuMAWyUTR8BjAF0lEdAlLzwTM7lrHV9lChoBkdAclMv3rUsnWgHTRcBaAhHQJS9D4Glhw51fZQoaAZHQHMp9AxBVuJoB01sAWgIR0CUvYZuyeI3dX2UKGgGR0ByZuwyIpH7aAdNPAFoCEdAlL2aB/Zuh3V9lChoBkdAcKjebNKRMmgHTdQBaAhHQJS91XS0BwN1fZQoaAZHQHJnATRIBiloB00UAWgIR0CUvoh+fAbidX2UKGgGR0BxsRLWZqmCaAdNBQJoCEdAlL89kOI683V9lChoBkdAb8Oxzq8lHGgHTaABaAhHQJS/SFev6j51fZQoaAZHQHA6g1m8M/hoB009AWgIR0CUv2iCrcTKdX2UKGgGR0BxZXiiqQzUaAdNmgFoCEdAlL9rvTgEU3V9lChoBkdAbPdylN1yNmgHTUwBaAhHQJS/tG3F1jl1fZQoaAZHQHE+faURnOBoB011AWgIR0CUv8RZlnRLdX2UKGgGR0Bx76F10T11aAdNCgFoCEdAlL/JpJwsG3V9lChoBkdAczjpNKyv92gHTSsBaAhHQJS/0tkFwDN1fZQoaAZHQHFhufqX4TNoB01AAWgIR0CUv+yckMTfdX2UKGgGR0BxSZfReC04aAdNRwFoCEdAlMAKOLiuMnV9lChoBkdAb9AZpBX0XmgHTSEBaAhHQJTAFQ9A5aN1fZQoaAZHQHInqzu4PPNoB02tAWgIR0CUwHVlf7aadX2UKGgGR0BxQqjnFHawaAdNMgFoCEdAlMCVGPPszHV9lChoBkdAch61qWTouGgHTS4BaAhHQJTAnOlfqot1fZQoaAZHQHJbh2bG3nZoB01cAWgIR0CUwTZ0Syt3dX2UKGgGR0BzThRoAXEZaAdL9GgIR0CUwVyJsO5KdX2UKGgGR0Bv9lZ1V5ryaAdNPgFoCEdAlMGQMQVbinV9lChoBkdAcOTiWE9MbmgHTRYBaAhHQJTCKsny/bl1fZQoaAZHQGyzBw++ueVoB00+AWgIR0CUwi6ErXlKdX2UKGgGR0Byi9PtUn5SaAdNPAFoCEdAlMJH0TURWnV9lChoBkdAcgV3M6ij+WgHTRQBaAhHQJTCSEvkBCF1fZQoaAZHQE8CQlruYyBoB00EAWgIR0CUwnGr0aqCdX2UKGgGR0Bv8DXtjTa1aAdNUgFoCEdAlMJ+OKfnOnV9lChoBkdAcwuBlcyFf2gHTREBaAhHQJTCg1VHWjJ1fZQoaAZHQHIvKBiCrcVoB01GAWgIR0CUwt0rbxmTdX2UKGgGR0BuMrbWVeKLaAdNewFoCEdAlMM1EAo5P3V9lChoBkdAbxRGOuJUHmgHTTcBaAhHQJTDabSZ0CB1fZQoaAZHQHCDKzNUwSJoB00xAWgIR0CUw4r2g398dX2UKGgGR0Byl1DMNc4YaAdNRQFoCEdAlMOvoRqXW3V9lChoBkdAcL2UXpGFz2gHTR0BaAhHQJTEAwJw84h1fZQoaAZHQHE9OiJwbVBoB03yAWgIR0CUxI7el9BsdX2UKGgGR0Bxu/Hjp9qlaAdNYQFoCEdAlMaHbuc+aHV9lChoBkdAcrXKujh1kmgHTQkBaAhHQJTG3Ck43m51fZQoaAZHQHAirWAf+0hoB00jAWgIR0CUxusLfDUFdX2UKGgGR0ByV1iDujREaAdNJwFoCEdAlMb2Fev6j3V9lChoBkdAcmUDdgv12GgHTWkBaAhHQJTG9qfvnbJ1fZQoaAZHQHFgJUPxx1hoB01YAWgIR0CUx1oPkJa8dX2UKGgGR0Bwvj3Ehq0uaAdNWgFoCEdAlMhEKZ2IPHV9lChoBkdAcht38n/kvWgHTaQBaAhHQJTITpPhybR1fZQoaAZHQHB7Ondfsu5oB00lAWgIR0CUyHerMkhSdX2UKGgGR0BxA8CJXQt0aAdNpgFoCEdAlMicuWa+e3V9lChoBkdAcJhgH/tICmgHTVoBaAhHQJTI5p1zQu51fZQoaAZHQHFCAXuVopRoB03IAWgIR0CUzJu76Hj7dX2UKGgGR0BweE2eg+QmaAdNOQFoCEdAlMzHgpBomHV9lChoBkdAcezF3Y+SsGgHTSUBaAhHQJTM6EpRXOp1fZQoaAZHQHJmTnNgSe1oB03CAWgIR0CUzUSB9TgmdX2UKGgGR0BwM7vCuU2UaAdNLAFoCEdAlM16fFrEcnV9lChoBkdAcSoxTsIE82gHTRsBaAhHQJTNmCDmKZV1fZQoaAZHQHKrlrylN11oB00xAWgIR0CUzdLApKBedX2UKGgGR0BwgrK1XvH+aAdNTgFoCEdAlM4Wykbgj3V9lChoBkdAblR4+KTB7GgHTecBaAhHQJTOMLLIPsl1fZQoaAZHQHHNcByS3b5oB01uAWgIR0CUzuNcGC7LdX2UKGgGR0ByhO16Vt4zaAdNoQFoCEdAlM7sRcu8LHV9lChoBkdAbpWoZQ53kmgHTScBaAhHQJTO9EDyOJd1fZQoaAZHQG/gWcz67/ZoB00tAWgIR0CUzvuVopQUdX2UKGgGR0ByAKKHfuTiaAdNKAFoCEdAlM8Vr/Khc3V9lChoBkdAcK6eI2wV02gHTRYBaAhHQJTPQdRzijt1fZQoaAZHQHIHK4pc5bRoB00QAWgIR0CUz56lLvkSdX2UKGgGR0BIjv0qYqoZaAdL6mgIR0CUz+cHGCI2dX2UKGgGR0ByzrpzLfUGaAdNSQFoCEdAlNAMIE8q4HV9lChoBkdAcMNO0LMLW2gHTWABaAhHQJTQGYiPhhp1fZQoaAZHQHEgrVrhzeZoB00MAWgIR0CU0CMTewcHdX2UKGgGR0Bw0ftw71ZlaAdNowFoCEdAlNBWTot+TnV9lChoBkdAbzhMY/FBIGgHTUQBaAhHQJTQdoDgZTB1fZQoaAZHQG70l05lvqFoB01RAWgIR0CU0SEDhcZ+dX2UKGgGR0Bx0rtnf2saaAdNMAFoCEdAlNHyTUy57XV9lChoBkdAcoQyprDZUWgHTTMBaAhHQJTSHHZK3/h1fZQoaAZHQHCIIsunMt9oB019AWgIR0CU0hzDn/1hdX2UKGgGR0BycbCqIacaaAdNGwFoCEdAlNI6s6q82HV9lChoBkdAcWb2ki2UjmgHTTkBaAhHQJTSWJGe+VV1fZQoaAZHQHGeyOFQEZBoB02dAWgIR0CU0mRGc4HYdX2UKGgGR0Bw/Cl/H5rQaAdNXAFoCEdAlNKPkq+ajXV9lChoBkdAcV44lyBClmgHTRYBaAhHQJTS8nQY1pF1fZQoaAZHQHIN+OGTLW9oB01HAWgIR0CU0ypkPMB7dX2UKGgGR0Byou0QbuMNaAdNMAFoCEdAlNNvTodMkHV9lChoBkdAcg3r1/Ue+2gHTUUBaAhHQJTTmZBsyi51fZQoaAZHQHJQ48U21lZoB00sAWgIR0CU06lRP421dX2UKGgGR0BuC3tfG+9KaAdNRQFoCEdAlNOwnc+JQHV9lChoBkdAcXM5le4TbmgHTdcBaAhHQJTTz24/eLx1fZQoaAZHQHKcd6sySFJoB00GAWgIR0CU1M1g6U7kdX2UKGgGR0Bu29nTRYzSaAdNVwFoCEdAlNTTfek563V9lChoBkdAclld1+y7gGgHTaQBaAhHQJTU8I3R5Tt1fZQoaAZHQHF94nfEXLxoB00xAWgIR0CU1R6Hj6vadX2UKGgGR0By2Kt/4IrwaAdNIwFoCEdAlNVU1/DtPnV9lChoBkdAbzQ9bHIZImgHTRcBaAhHQJTVX5VOsT51fZQoaAZHQHCLxmTTvy9oB01CAWgIR0CU1Wwt8NQTdX2UKGgGR0BxXkjRlYlqaAdNTAFoCEdAlNWYJAt4A3V9lChoBkdAcoossxwhn2gHTRQBaAhHQJTV37gsK9h1fZQoaAZHQHKCPVd5Y5loB011AWgIR0CU1heLNwBHdX2UKGgGR0BynUOhCdBjaAdNUQFoCEdAlNZKAe7tiXV9lChoBkdAbfBA6dUbUGgHTTkBaAhHQJTWf+vQnhN1fZQoaAZHQHFBscQyylhoB006AWgIR0CU1sL876pHdX2UKGgGR0BwGNzHS4OMaAdNQAFoCEdAlNbKjWTX8XV9lChoBkdAcjaUQ04zamgHTUcBaAhHQJTWzRx95Qh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99999, "gae_lambda": 0.98, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}", "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function RolloutBuffer.__init__ at 0x73c750a0f2e0>", "reset": "<function RolloutBuffer.reset at 0x73c750a0f380>", "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x73c750a0f420>", "add": "<function RolloutBuffer.add at 0x73c750a0f560>", "get": "<function RolloutBuffer.get at 0x73c750a0f600>", "_get_samples": "<function RolloutBuffer._get_samples at 0x73c750a0f6a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x73c750a14500>"}, "rollout_buffer_kwargs": {}, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVfgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFovaG9tZS9tbC9taW5pZm9yZ2UzL2VudnMvSEYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFovaG9tZS9tbC9taW5pZm9yZ2UzL2VudnMvSEYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.0-26-generic-x86_64-with-glibc2.35 # 26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Mar 12 10:22:43 UTC 2", "Python": "3.12.2", "Stable-Baselines3": "2.3.0", "PyTorch": "2.1.2.post3", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f860df3a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f860df3a7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f860df3a840>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f860df3a8e0>", "_build": "<function ActorCriticPolicy._build at 0x7f860df3a980>", "forward": "<function ActorCriticPolicy.forward at 0x7f860df3aa20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f860df3aac0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f860df3ab60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f860df3ac00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f860df3aca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f860df3ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f860df3ade0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f860df36600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712595004558087332, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZRbD1l2QM/byWPPdRWMb9p9gY9EYUzPQAAAAAAAAAATVRLvVz3ULpa/xm0QOT3r56LqDvRCrgzAACAPwAAgD9zCY29IYh8Pup6sj5Pzfm+NYLLPfOp1z0AAAAAAAAAAAB8qzyLyI891g0HPuSYn74Fths+Sek6PQAAAAAAAAAAAE4HPWk0CD3meeG7glmYvpayoT0u/ei9AAAAAAAAAABAzLG9epNOPxrIpDxOiza/K/g7vsw5Lz0AAAAAAAAAAErViz6T7RQ/WduRPvbrMr81rK0+HdV7uwAAAAAAAAAAs2CAvXFtJLsKHSM+rFB1O9Ibfrwi6HM8AAAAAAAAgD8A3qs8UhDZuZksPbk6My60iZW/uoY5WTgAAIA/AACAP7PYXb07DJu8ezRYPqwUHD3KLw29DhftugAAAAAAAAAAM2uKuxmhrT+QjXa9XWYJv8zlWrzKZQ++AAAAAAAAAAAA/O28uvIkPnZpsz0vxvq+NFKMPW3J6T0AAAAAAAAAAOa+VD0xlBs8N/+zviL5kb6Gqo48+jm9vQAAAAAAAAAA+itIPnluDD+eMIk6BJMbv4haeT4LlGo8AAAAAAAAAADmsO29lZuNP/s5AL8O4TK/wmQtvp/mnr4AAAAAAAAAAO2PNr7ILoQ+50AJPzTf2r7zfRa9v6GfPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL+I2Kl54aMAWyUS+uMAXSUR0CVMELx7RfGdX2UKGgGR0BzpR3W4EwGaAdLzGgIR0CVME6ZH/cWdX2UKGgGR0ByBnKzRhMKaAdL1WgIR0CVMFCiyprDdX2UKGgGR0Bxoe/qPfbcaAdL7GgIR0CVMGFPBSDRdX2UKGgGR0BzgtOqNp/PaAdL4GgIR0CVMGZm7J4jdX2UKGgGR0B0Av4rSVnmaAdL1WgIR0CVMG62v0ROdX2UKGgGR0BooYCCBf8eaAdN6ANoCEdAlTCwGr0aqHV9lChoBkdAchlophF3IWgHS+RoCEdAlTC3gP3BYXV9lChoBkdAck0aEBbOeWgHS55oCEdAlTDvaDf3vnV9lChoBkdAcudXL/0dzWgHS9FoCEdAlTEM5CF9KHV9lChoBkdAct820iQkomgHS65oCEdAlTEznzQNTnV9lChoBkdAclSYjjaPCGgHS+BoCEdAlTFGPxQSBnV9lChoBkdAc3wX2/SH/WgHS7ZoCEdAlTFYV/MGHHV9lChoBkdAcwzet0V8C2gHS71oCEdAlTFjYVZcLXV9lChoBkdAcWfHCoCMgmgHS9hoCEdAlTGxKQJXyXV9lChoBkdAczQRxcVxj2gHS+BoCEdAlTGzPjXFtXV9lChoBkdAc55nPmganGgHS91oCEdAlTHZNO/L1XV9lChoBkdAbui+wC8vmGgHS+poCEdAlTHtMK1G9nV9lChoBkdAc6aVjI7vHGgHTRwBaAhHQJUx8N8VpK11fZQoaAZHQHCQSv1UVBVoB0u9aAhHQJUyBkjHGS91fZQoaAZHQHLcTFMqSYBoB0vyaAhHQJUyC16Vt411fZQoaAZHQHOJ98JD3M9oB00MAWgIR0CVMhUnXumadX2UKGgGR0BxC8RywOe8aAdLx2gIR0CVNcSy+pOvdX2UKGgGR0BzMJT0g8r7aAdNCAFoCEdAlTXxhx5s03V9lChoBkdActxefqX4TWgHS6hoCEdAlTYHVTaTOnV9lChoBkdAc0xAmAskIGgHS8RoCEdAlTYK59Vmz3V9lChoBkdAc5EyxiXpn2gHS+VoCEdAlTYff8/D+HV9lChoBkdAcTU0yP+4smgHS8doCEdAlTY17Y02tXV9lChoBkdAclTYoAn2I2gHS5toCEdAlTY9Lg4wRHV9lChoBkdAS56eVcD8tWgHS3poCEdAlTZgGB4D93V9lChoBkdActNPfKp1imgHS+poCEdAlTZiEpRXOnV9lChoBkdAcnzPT5O8CmgHTcsBaAhHQJU2vf2saKl1fZQoaAZHQHDWtRNyo4xoB0vEaAhHQJU2v8rI5o51fZQoaAZHQHJhgx8D0UZoB0vYaAhHQJU2zZXdTHd1fZQoaAZHQHPXt8Z1mrdoB0vvaAhHQJU20yM1jy51fZQoaAZHQHLG+TV2A5JoB0veaAhHQJU3AG4ZuQ91fZQoaAZHQHRME4//vORoB0voaAhHQJU3C7lJYkp1fZQoaAZHQHPgZ+tr9EVoB0v5aAhHQJU3D6ab4Jx1fZQoaAZHQHIWJUPxx1hoB0vEaAhHQJU3G4pc5bR1fZQoaAZHQG/s5xaPjn5oB0u9aAhHQJU3MwGnn+11fZQoaAZHQHG2aJAMUh5oB0vHaAhHQJU3Uyk9ECx1fZQoaAZHQHMT4ZqEeyRoB0vIaAhHQJU3ga6z3RJ1fZQoaAZHQHMY6L0jC55oB0vFaAhHQJU3n7ZWaMJ1fZQoaAZHQHIl0Dlo11poB0vxaAhHQJU3reDWbw11fZQoaAZHQHLlggkka/BoB0v/aAhHQJU3s274BWB1fZQoaAZHQHGX8PvrnkloB0vaaAhHQJU3xnoPkJd1fZQoaAZHQHDgN9hJAdJoB0u9aAhHQJU37UI9kjJ1fZQoaAZHQHG27XL/0d1oB0vCaAhHQJU4DcN6PbR1fZQoaAZHQHCvYppeu3doB0vIaAhHQJU4EhJRO1x1fZQoaAZHQG7UKPXCj1xoB00sAWgIR0CVOCuc+aBqdX2UKGgGR0BxFW3OObRXaAdLumgIR0CVOD0Fr2xqdX2UKGgGR0Bwynsu3+dcaAdLv2gIR0CVOEicoYvWdX2UKGgGR0B0lxruYx+KaAdL+GgIR0CVOFGHHmzTdX2UKGgGR0Bx71nctXgcaAdL2mgIR0CVOH17Y02tdX2UKGgGR0ByyWtT1kDqaAdNAAFoCEdAlTicrqdH2HV9lChoBkdAcLvCa7VawGgHS7FoCEdAlTjC7kGRm3V9lChoBkdAcL1M/yGzr2gHS81oCEdAlTjVCHARCnV9lChoBkdAdDNJKraM72gHS+5oCEdAlTjai9IwunV9lChoBkdAcsp2K2rn1WgHTRQBaAhHQJU483aSLZV1fZQoaAZHQHHoepKjBVNoB0vCaAhHQJU4/8EV32V1fZQoaAZHQG1U2iUPhAJoB0u0aAhHQJU5C7Wd3B51fZQoaAZHQHPG5wKjSG9oB0vYaAhHQJU5D9ehPCV1fZQoaAZHQG/WwSzw+dNoB0uwaAhHQJU5H0e2d/d1fZQoaAZHQHNVv7WNFSdoB0vyaAhHQJU5L863iJh1fZQoaAZHQHEjN6X0Gu9oB0vAaAhHQJU5OWrwOON1fZQoaAZHQHE3/Dcdo39oB0uqaAhHQJU5Py08eS11fZQoaAZHQHGsE2YOUdJoB0uraAhHQJU5ShEjPfN1fZQoaAZHQHFnAr6LwWpoB0uraAhHQJU5UZpBX0Z1fZQoaAZHQHIAEdzXBgxoB0vJaAhHQJU5WJrLyMF1fZQoaAZHQHIlNpEhJRRoB0vRaAhHQJU5tG6PKdR1fZQoaAZHQHHGTpTuOS5oB0vaaAhHQJU6FF4LThJ1fZQoaAZHQHNF3GGVRk5oB0vRaAhHQJU6GDAaef91fZQoaAZHQHCo1Pacqe9oB0vEaAhHQJU6R4RmK651fZQoaAZHQHI1posZpBZoB0vbaAhHQJU6TtgKF7F1fZQoaAZHQHNdMfV7QcBoB00TAWgIR0CVOlFtsN2DdX2UKGgGR0ByHKdWhh6TaAdLzGgIR0CVOlFS88LbdX2UKGgGR0Bx9Z1DBuXNaAdLtmgIR0CVOlcSoOx0dX2UKGgGR0BzgfMRpUPyaAdL9GgIR0CVOlysjmjkdX2UKGgGR0Bx5qpAD7qIaAdLt2gIR0CVOmHvttygdX2UKGgGR0BwKYEkjX4CaAdLsGgIR0CVOngr6LwXdX2UKGgGR0By2Sv1UVBVaAdL8WgIR0CVOnnJDE3sdX2UKGgGR0BxdbaXa8HwaAdLv2gIR0CVOoSmqHXVdX2UKGgGR0BzBjdhy8zzaAdL52gIR0CVOoi7TUiIdX2UKGgGR0Bwv+fh/Aj6aAdL3mgIR0CVOqSQ5myxdX2UKGgGR0Bx+2curZJ1aAdL72gIR0CVOq+Lm6oVdX2UKGgGR0BxtYgDA8B/aAdL02gIR0CVOvxCY1HfdX2UKGgGR0Bvf9xAB1cMaAdLo2gIR0CVOzvFm4AkdX2UKGgGR0Bu0L3XZoPDaAdLxGgIR0CVOz+uNgjRdX2UKGgGR0Bv0MUGmk30aAdLt2gIR0CVO1W4EwFldX2UKGgGR0Bw2Pn5i3G5aAdLxWgIR0CVO3b1RLsbdX2UKGgGR0BykmPxQSBcaAdL52gIR0CVO3kWAPNFdX2UKGgGR0ByKPFYMfA9aAdLyWgIR0CVO4Pk7wKCdX2UKGgGR0BxhV5nlGPQaAdL0GgIR0CVO5vWpZOjdX2UKGgGR0BvmoI0IkZ8aAdLtGgIR0CVO56jFhoedX2UKGgGR0ByLUnndO6/aAdL6GgIR0CVO67VawEAdX2UKGgGR0BzeW9lEqlQaAdL2WgIR0CVO8gE2YOUdX2UKGgGR0BzPj56+nIiaAdL9WgIR0CVO9IAwPAgdX2UKGgGR0B0gqoKlYU4aAdL6mgIR0CVO+CjDbaidX2UKGgGR0ByMpcv/R3NaAdL/mgIR0CVPBAskIHDdX2UKGgGR0Byht4X40uUaAdL9GgIR0CVPCm8M/hVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}", "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function RolloutBuffer.__init__ at 0x7f860dec72e0>", "reset": "<function RolloutBuffer.reset at 0x7f860dec7380>", "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7f860dec7420>", "add": "<function RolloutBuffer.add at 0x7f860dec7560>", "get": "<function RolloutBuffer.get at 0x7f860dec7600>", "_get_samples": "<function RolloutBuffer._get_samples at 0x7f860dec76a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f860debddc0>"}, "rollout_buffer_kwargs": {}, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVfgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFovaG9tZS9tbC9taW5pZm9yZ2UzL2VudnMvSEYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVfgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFovaG9tZS9tbC9taW5pZm9yZ2UzL2VudnMvSEYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.5.0-26-generic-x86_64-with-glibc2.35 # 26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Mar 12 10:22:43 UTC 2", "Python": "3.12.2", "Stable-Baselines3": "2.3.0", "PyTorch": "2.1.2.post3", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2309833a1065aceff5f5aadb6fdee8e701b0022b32b53c722c75ab2f12c1216
|
3 |
+
size 149482
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -78,9 +78,9 @@
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"rollout_buffer_class": {
|
@@ -89,14 +89,14 @@
|
|
89 |
"__module__": "stable_baselines3.common.buffers",
|
90 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
|
91 |
"__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
92 |
-
"__init__": "<function RolloutBuffer.__init__ at
|
93 |
-
"reset": "<function RolloutBuffer.reset at
|
94 |
-
"compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at
|
95 |
-
"add": "<function RolloutBuffer.add at
|
96 |
-
"get": "<function RolloutBuffer.get at
|
97 |
-
"_get_samples": "<function RolloutBuffer._get_samples at
|
98 |
"__abstractmethods__": "frozenset()",
|
99 |
-
"_abc_impl": "<_abc._abc_data object at
|
100 |
},
|
101 |
"rollout_buffer_kwargs": {},
|
102 |
"batch_size": 64,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f860df3a700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f860df3a7a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f860df3a840>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f860df3a8e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f860df3a980>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f860df3aa20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f860df3aac0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f860df3ab60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f860df3ac00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f860df3aca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f860df3ad40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f860df3ade0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f860df36600>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1712595004558087332,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZRbD1l2QM/byWPPdRWMb9p9gY9EYUzPQAAAAAAAAAATVRLvVz3ULpa/xm0QOT3r56LqDvRCrgzAACAPwAAgD9zCY29IYh8Pup6sj5Pzfm+NYLLPfOp1z0AAAAAAAAAAAB8qzyLyI891g0HPuSYn74Fths+Sek6PQAAAAAAAAAAAE4HPWk0CD3meeG7glmYvpayoT0u/ei9AAAAAAAAAABAzLG9epNOPxrIpDxOiza/K/g7vsw5Lz0AAAAAAAAAAErViz6T7RQ/WduRPvbrMr81rK0+HdV7uwAAAAAAAAAAs2CAvXFtJLsKHSM+rFB1O9Ibfrwi6HM8AAAAAAAAgD8A3qs8UhDZuZksPbk6My60iZW/uoY5WTgAAIA/AACAP7PYXb07DJu8ezRYPqwUHD3KLw29DhftugAAAAAAAAAAM2uKuxmhrT+QjXa9XWYJv8zlWrzKZQ++AAAAAAAAAAAA/O28uvIkPnZpsz0vxvq+NFKMPW3J6T0AAAAAAAAAAOa+VD0xlBs8N/+zviL5kb6Gqo48+jm9vQAAAAAAAAAA+itIPnluDD+eMIk6BJMbv4haeT4LlGo8AAAAAAAAAADmsO29lZuNP/s5AL8O4TK/wmQtvp/mnr4AAAAAAAAAAO2PNr7ILoQ+50AJPzTf2r7zfRa9v6GfPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHL+I2Kl54aMAWyUS+uMAXSUR0CVMELx7RfGdX2UKGgGR0BzpR3W4EwGaAdLzGgIR0CVME6ZH/cWdX2UKGgGR0ByBnKzRhMKaAdL1WgIR0CVMFCiyprDdX2UKGgGR0Bxoe/qPfbcaAdL7GgIR0CVMGFPBSDRdX2UKGgGR0BzgtOqNp/PaAdL4GgIR0CVMGZm7J4jdX2UKGgGR0B0Av4rSVnmaAdL1WgIR0CVMG62v0ROdX2UKGgGR0BooYCCBf8eaAdN6ANoCEdAlTCwGr0aqHV9lChoBkdAchlophF3IWgHS+RoCEdAlTC3gP3BYXV9lChoBkdAck0aEBbOeWgHS55oCEdAlTDvaDf3vnV9lChoBkdAcudXL/0dzWgHS9FoCEdAlTEM5CF9KHV9lChoBkdAct820iQkomgHS65oCEdAlTEznzQNTnV9lChoBkdAclSYjjaPCGgHS+BoCEdAlTFGPxQSBnV9lChoBkdAc3wX2/SH/WgHS7ZoCEdAlTFYV/MGHHV9lChoBkdAcwzet0V8C2gHS71oCEdAlTFjYVZcLXV9lChoBkdAcWfHCoCMgmgHS9hoCEdAlTGxKQJXyXV9lChoBkdAczQRxcVxj2gHS+BoCEdAlTGzPjXFtXV9lChoBkdAc55nPmganGgHS91oCEdAlTHZNO/L1XV9lChoBkdAbui+wC8vmGgHS+poCEdAlTHtMK1G9nV9lChoBkdAc6aVjI7vHGgHTRwBaAhHQJUx8N8VpK11fZQoaAZHQHCQSv1UVBVoB0u9aAhHQJUyBkjHGS91fZQoaAZHQHLcTFMqSYBoB0vyaAhHQJUyC16Vt411fZQoaAZHQHOJ98JD3M9oB00MAWgIR0CVMhUnXumadX2UKGgGR0BxC8RywOe8aAdLx2gIR0CVNcSy+pOvdX2UKGgGR0BzMJT0g8r7aAdNCAFoCEdAlTXxhx5s03V9lChoBkdActxefqX4TWgHS6hoCEdAlTYHVTaTOnV9lChoBkdAc0xAmAskIGgHS8RoCEdAlTYK59Vmz3V9lChoBkdAc5EyxiXpn2gHS+VoCEdAlTYff8/D+HV9lChoBkdAcTU0yP+4smgHS8doCEdAlTY17Y02tXV9lChoBkdAclTYoAn2I2gHS5toCEdAlTY9Lg4wRHV9lChoBkdAS56eVcD8tWgHS3poCEdAlTZgGB4D93V9lChoBkdActNPfKp1imgHS+poCEdAlTZiEpRXOnV9lChoBkdAcnzPT5O8CmgHTcsBaAhHQJU2vf2saKl1fZQoaAZHQHDWtRNyo4xoB0vEaAhHQJU2v8rI5o51fZQoaAZHQHJhgx8D0UZoB0vYaAhHQJU2zZXdTHd1fZQoaAZHQHPXt8Z1mrdoB0vvaAhHQJU20yM1jy51fZQoaAZHQHLG+TV2A5JoB0veaAhHQJU3AG4ZuQ91fZQoaAZHQHRME4//vORoB0voaAhHQJU3C7lJYkp1fZQoaAZHQHPgZ+tr9EVoB0v5aAhHQJU3D6ab4Jx1fZQoaAZHQHIWJUPxx1hoB0vEaAhHQJU3G4pc5bR1fZQoaAZHQG/s5xaPjn5oB0u9aAhHQJU3MwGnn+11fZQoaAZHQHG2aJAMUh5oB0vHaAhHQJU3Uyk9ECx1fZQoaAZHQHMT4ZqEeyRoB0vIaAhHQJU3ga6z3RJ1fZQoaAZHQHMY6L0jC55oB0vFaAhHQJU3n7ZWaMJ1fZQoaAZHQHIl0Dlo11poB0vxaAhHQJU3reDWbw11fZQoaAZHQHLlggkka/BoB0v/aAhHQJU3s274BWB1fZQoaAZHQHGX8PvrnkloB0vaaAhHQJU3xnoPkJd1fZQoaAZHQHDgN9hJAdJoB0u9aAhHQJU37UI9kjJ1fZQoaAZHQHG27XL/0d1oB0vCaAhHQJU4DcN6PbR1fZQoaAZHQHCvYppeu3doB0vIaAhHQJU4EhJRO1x1fZQoaAZHQG7UKPXCj1xoB00sAWgIR0CVOCuc+aBqdX2UKGgGR0BxFW3OObRXaAdLumgIR0CVOD0Fr2xqdX2UKGgGR0Bwynsu3+dcaAdLv2gIR0CVOEicoYvWdX2UKGgGR0B0lxruYx+KaAdL+GgIR0CVOFGHHmzTdX2UKGgGR0Bx71nctXgcaAdL2mgIR0CVOH17Y02tdX2UKGgGR0ByyWtT1kDqaAdNAAFoCEdAlTicrqdH2HV9lChoBkdAcLvCa7VawGgHS7FoCEdAlTjC7kGRm3V9lChoBkdAcL1M/yGzr2gHS81oCEdAlTjVCHARCnV9lChoBkdAdDNJKraM72gHS+5oCEdAlTjai9IwunV9lChoBkdAcsp2K2rn1WgHTRQBaAhHQJU483aSLZV1fZQoaAZHQHHoepKjBVNoB0vCaAhHQJU4/8EV32V1fZQoaAZHQG1U2iUPhAJoB0u0aAhHQJU5C7Wd3B51fZQoaAZHQHPG5wKjSG9oB0vYaAhHQJU5D9ehPCV1fZQoaAZHQG/WwSzw+dNoB0uwaAhHQJU5H0e2d/d1fZQoaAZHQHNVv7WNFSdoB0vyaAhHQJU5L863iJh1fZQoaAZHQHEjN6X0Gu9oB0vAaAhHQJU5OWrwOON1fZQoaAZHQHE3/Dcdo39oB0uqaAhHQJU5Py08eS11fZQoaAZHQHGsE2YOUdJoB0uraAhHQJU5ShEjPfN1fZQoaAZHQHFnAr6LwWpoB0uraAhHQJU5UZpBX0Z1fZQoaAZHQHIAEdzXBgxoB0vJaAhHQJU5WJrLyMF1fZQoaAZHQHIlNpEhJRRoB0vRaAhHQJU5tG6PKdR1fZQoaAZHQHHGTpTuOS5oB0vaaAhHQJU6FF4LThJ1fZQoaAZHQHNF3GGVRk5oB0vRaAhHQJU6GDAaef91fZQoaAZHQHCo1Pacqe9oB0vEaAhHQJU6R4RmK651fZQoaAZHQHI1posZpBZoB0vbaAhHQJU6TtgKF7F1fZQoaAZHQHNdMfV7QcBoB00TAWgIR0CVOlFtsN2DdX2UKGgGR0ByHKdWhh6TaAdLzGgIR0CVOlFS88LbdX2UKGgGR0Bx9Z1DBuXNaAdLtmgIR0CVOlcSoOx0dX2UKGgGR0BzgfMRpUPyaAdL9GgIR0CVOlysjmjkdX2UKGgGR0Bx5qpAD7qIaAdLt2gIR0CVOmHvttygdX2UKGgGR0BwKYEkjX4CaAdLsGgIR0CVOngr6LwXdX2UKGgGR0By2Sv1UVBVaAdL8WgIR0CVOnnJDE3sdX2UKGgGR0BxdbaXa8HwaAdLv2gIR0CVOoSmqHXVdX2UKGgGR0BzBjdhy8zzaAdL52gIR0CVOoi7TUiIdX2UKGgGR0Bwv+fh/Aj6aAdL3mgIR0CVOqSQ5myxdX2UKGgGR0Bx+2curZJ1aAdL72gIR0CVOq+Lm6oVdX2UKGgGR0BxtYgDA8B/aAdL02gIR0CVOvxCY1HfdX2UKGgGR0Bvf9xAB1cMaAdLo2gIR0CVOzvFm4AkdX2UKGgGR0Bu0L3XZoPDaAdLxGgIR0CVOz+uNgjRdX2UKGgGR0Bv0MUGmk30aAdLt2gIR0CVO1W4EwFldX2UKGgGR0Bw2Pn5i3G5aAdLxWgIR0CVO3b1RLsbdX2UKGgGR0BykmPxQSBcaAdL52gIR0CVO3kWAPNFdX2UKGgGR0ByKPFYMfA9aAdLyWgIR0CVO4Pk7wKCdX2UKGgGR0BxhV5nlGPQaAdL0GgIR0CVO5vWpZOjdX2UKGgGR0BvmoI0IkZ8aAdLtGgIR0CVO56jFhoedX2UKGgGR0ByLUnndO6/aAdL6GgIR0CVO67VawEAdX2UKGgGR0BzeW9lEqlQaAdL2WgIR0CVO8gE2YOUdX2UKGgGR0BzPj56+nIiaAdL9WgIR0CVO9IAwPAgdX2UKGgGR0B0gqoKlYU4aAdL6mgIR0CVO+CjDbaidX2UKGgGR0ByMpcv/R3NaAdL/mgIR0CVPBAskIHDdX2UKGgGR0Byht4X40uUaAdL9GgIR0CVPCm8M/hVdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.02,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"rollout_buffer_class": {
|
|
|
89 |
"__module__": "stable_baselines3.common.buffers",
|
90 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
|
91 |
"__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
92 |
+
"__init__": "<function RolloutBuffer.__init__ at 0x7f860dec72e0>",
|
93 |
+
"reset": "<function RolloutBuffer.reset at 0x7f860dec7380>",
|
94 |
+
"compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7f860dec7420>",
|
95 |
+
"add": "<function RolloutBuffer.add at 0x7f860dec7560>",
|
96 |
+
"get": "<function RolloutBuffer.get at 0x7f860dec7600>",
|
97 |
+
"_get_samples": "<function RolloutBuffer._get_samples at 0x7f860dec76a0>",
|
98 |
"__abstractmethods__": "frozenset()",
|
99 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f860debddc0>"
|
100 |
},
|
101 |
"rollout_buffer_kwargs": {},
|
102 |
"batch_size": 64,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87978
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd26433ca44cc7d9a2f04343b82a541b019729dc8491e958d7ca0adbe5265af
|
3 |
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43634
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5adb33cf9e611ac7237a9274e6452759dd4662b8f0282da3e9e383862a84294
|
3 |
size 43634
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 259.2777518280756, "std_reward": 68.12628259975511, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-08T19:12:45.269790"}
|