File size: 1,848 Bytes
776a96a 4c6463e f8ee987 4c6463e f8ee987 4c6463e f8ee987 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e f8ee987 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e 776a96a 4c6463e f8ee987 4c6463e 776a96a 4c6463e 776a96a f8ee987 776a96a 4c6463e 776a96a 4c6463e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- ka
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper Tiny Ka
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice
type: mozilla-foundation/common_voice_16_1
config: ka
split: test
args: ka
metrics:
- name: Wer
type: wer
value: 100.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Ka
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice dataset.
It achieves the following results on the evaluation set:
- Loss: 7.6994
- Wer: 100.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-----:|
| 8.8508 | 15.38 | 25 | 7.6994 | 100.0 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.0.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2
|