File size: 1,652 Bytes
ec7e849
 
55f7a72
ec7e849
 
 
 
 
 
 
 
 
 
 
 
 
 
55f7a72
ec7e849
55f7a72
 
ec7e849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f7a72
ec7e849
 
 
 
 
 
55f7a72
 
 
 
ec7e849
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ckpts
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ckpts

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2499
- Accuracy: 0.9657

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1792        | 2.02  | 500  | 0.2998          | 0.9313   |
| 0.1097        | 4.04  | 1000 | 0.3281          | 0.9475   |
| 0.0557        | 6.06  | 1500 | 0.2455          | 0.9657   |
| 0.0535        | 8.08  | 2000 | 0.2268          | 0.9657   |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.1.2
- Datasets 2.18.1.dev0
- Tokenizers 0.15.2