--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: results results: [] --- # results This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0452 - Precision: 0.8809 - Recall: 0.9161 - F1: 0.8982 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1732 | 1.0 | 2180 | 0.1202 | 0.5106 | 0.6557 | 0.5741 | 0.9612 | | 0.1057 | 2.0 | 4360 | 0.0821 | 0.6500 | 0.7866 | 0.7118 | 0.9728 | | 0.0639 | 3.0 | 6540 | 0.0573 | 0.7953 | 0.8256 | 0.8102 | 0.9812 | | 0.0347 | 4.0 | 8720 | 0.0482 | 0.8531 | 0.9030 | 0.8773 | 0.9846 | | 0.0212 | 5.0 | 10900 | 0.0452 | 0.8809 | 0.9161 | 0.8982 | 0.9860 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1