Gladiator commited on
Commit
d147378
1 Parent(s): 70237d6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: microsoft-deberta-v3-large_cls_subj
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # microsoft-deberta-v3-large_cls_subj
16
+
17
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1525
20
+ - Accuracy: 0.976
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_ratio: 0.2
46
+ - num_epochs: 5
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 0.2629 | 1.0 | 500 | 0.1519 | 0.955 |
54
+ | 0.1232 | 2.0 | 1000 | 0.1121 | 0.974 |
55
+ | 0.0535 | 3.0 | 1500 | 0.1341 | 0.974 |
56
+ | 0.0152 | 4.0 | 2000 | 0.1794 | 0.969 |
57
+ | 0.0043 | 5.0 | 2500 | 0.1525 | 0.976 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.25.1
63
+ - Pytorch 1.13.0+cu116
64
+ - Datasets 2.7.1
65
+ - Tokenizers 0.13.2