lhallee commited on
Commit
7080255
1 Parent(s): 6eafa1e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md CHANGED
@@ -1,3 +1,90 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ library_name: transformers
4
+ datasets:
5
+ - BIOGRID
6
+ - Negatome
7
+ pipeline_tag: text-classification
8
+ tags:
9
+ - protein language model
10
+ - biology
11
+ widget:
12
+ - text: >-
13
+ M S H S V K I Y D T C I G C T Q C V R A C P T D V L E M I P W G G C K A K Q
14
+ I A S A P R T E D C V G C K R C E S A C P T D F L S V R V Y L W H E T T R S
15
+ M G L A Y [SEP] M I N L P S L F V P L V G L L F P A V A M A S L F L H V E K
16
+ R L L F S T K K I N
17
+ example_title: Non-interacting proteins
18
+ - text: >-
19
+ M S I N I C R D N H D P F Y R Y K M P P I Q A K V E G R G N G I K T A V L N
20
+ V A D I S H A L N R P A P Y I V K Y F G F E L G A Q T S I S V D K D R Y L V
21
+ N G V H E P A K L Q D V L D G F I N K F V L C G S C K N P E T E I I I T K D
22
+ N D L V R D C K A C G K R T P M D L R H K L S S F I L K N P P D S V S G S K
23
+ K K K K A A T A S A N V R G G G L S I S D I A Q G K S Q N A P S D G T G S S
24
+ T P Q H H D E D E D E L S R Q I K A A A S T L E D I E V K D D E W A V D M S
25
+ E E A I R A R A K E L E V N S E L T Q L D E Y G E W I L E Q A G E D K E N L
26
+ P S D V E L Y K K A A E L D V L N D P K I G C V L A Q C L F D E D I V N E I
27
+ A E H N A F F T K I L V T P E Y E K N F M G G I E R F L G L E H K D L I P L
28
+ L P K I L V Q L Y N N D I I S E E E I M R F G T K S S K K F V P K E V S K K
29
+ V R R A A K P F I T W L E T A E S D D D E E D D E [SEP] M S I E N L K S F D
30
+ P F A D T G D D E T A T S N Y I H I R I Q Q R N G R K T L T T V Q G V P E E
31
+ Y D L K R I L K V L K K D F A C N G N I V K D P E M G E I I Q L Q G D Q R A
32
+ K V C E F M I S Q L G L Q K K N I K I H G F
33
+ example_title: Interacting proteins
34
  ---
35
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/62f2bd3bdb7cbd214b658c48/Ro4uhQDurP-x7IHJj11xa.png" width="350">
36
+
37
+ ## Model description
38
+
39
+ SYNTERACT (SYNThetic data-driven protein-protein intERACtion Transformer) is a fine-tuned version of [ProtBERT](https://huggingface.co/Rostlab/prot_bert_bfd) that attends two amino acid sequences separated by [SEP] to determine if they plausibly interact in biological context.
40
+
41
+ We utilized the multivalidated physical interaction dataset from BIORGID, Negatome, and synthetic negative samples to train our model. Check out our [preprint](https://www.biorxiv.org/content/10.1101/2023.06.07.544109v1.full) for more details.
42
+
43
+ SYNTERACT achieved unprecedented performance over vast phylogeny with 92-96% accuracy on real unseen examples, and is already being used to accelerate drug target screening and peptide therapeutic design.
44
+
45
+
46
+ ## How to use
47
+
48
+ ```python
49
+ # Imports
50
+ import re
51
+ import torch
52
+ import torch.nn.functional as F
53
+ from transformers import BertForSequenceClassification, BertTokenizer
54
+
55
+ model = BertForSequenceClassification.from_pretrained('lhallee/SYNTERACT') # load model
56
+ tokenizer = BertTokenizer.from_pretrained('lhallee/SYNTERACT') # load tokenizer
57
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # gather device
58
+ model.to(device) # move to device
59
+ model.eval() # put in eval mode
60
+
61
+ sequence_a = 'MEKSCSIGNGREQYGWGHGEQCGTQFLECVYRNASMYSVLGDLITYVVFLGATCYAILFGFRLLLSCVRIVLKVVIALFVIRLLLALGSVDITSVSYSG' # Uniprot A1Z8T3
62
+ sequence_b = 'MRLTLLALIGVLCLACAYALDDSENNDQVVGLLDVADQGANHANDGAREARQLGGWGGGWGGRGGWGGRGGWGGRGGWGGRGGWGGGWGGRGGWGGRGGGWYGR' # Uniprot A1Z8H0
63
+ sequence_a = ' '.join(list(re.sub(r'[UZOB]', 'X', sequence_a))) # need spaces inbetween amino acids
64
+ sequence_b = ' '.join(list(re.sub(r'[UZOB]', 'X', sequence_b))) # replace rare amino acids with X
65
+ example = sequence_a + ' [SEP] ' + sequence_b # add SEP token
66
+
67
+ example = tokenizer(example, return_tensors='pt', padding=False).to(device) # tokenize example
68
+ with torch.no_grad():
69
+ logits = model(**example).logits.cpu().detach() # get logits from model
70
+
71
+ probability = F.softmax(output, dim=-1) # use softmax to get "confidence" in the prediction
72
+ prediction = probability.argmax(dim=-1) # 0 for no interaction, 1 for interaction
73
+ ```
74
+
75
+ ## Intended use and limitations
76
+ We define a protein-protein interaction as physical contact that mediates chemical or conformational change, especially with non-generic function. However, due to SYNTERACTS propensity to predict false positives we believe that it identifies plausible conformational changes caused by interactions without relevance to function. Therefore, predictions by SYNTERACT should always be taken with a grain of salt and used as a means of hypothesis generation or secondary validation.
77
+
78
+ ## Our lab
79
+ The [Gleghorn lab](https://www.gleghornlab.com/) is an interdiciplinary research group out of the University of Delaware that focuses on translational problems around biomedicine. Recently we have begun exploration into protein language models and are passionate about excellent protein design and annotation.
80
+
81
+ ## Please cite
82
+ @article {Hallee2023.06.07.544109,
83
+ author = {Logan Hallee and Jason P. Gleghorn},
84
+ title = {Protein-Protein Interaction Prediction is Achievable with Large Language Models},
85
+ elocation-id = {2023.06.07.544109},
86
+ year = {2023},
87
+ doi = {10.1101/2023.06.07.544109},
88
+ publisher = {Cold Spring Harbor Laboratory},
89
+ journal = {bioRxiv}
90
+ }