--- license: cc-by-nc-2.0 library_name: transformers datasets: - CCDS - Ensembl pipeline_tag: fill-mask tags: - protein language model - biology widget: - text: ( Z [MASK] V L P Y G D E K L S P Y G D G G D V G Q I F s C B L Q D T N N F F G A g Q N K % O P K L G Q I G % S K % u u i e d d R i d D V L k n ( T D K @ p p ^ v example_title: Fill codon mask (Y) --- # cdsBERT ## Model description cdsBERT is pLM with a codon vocabulary that was seeded with [ProtBERT](https://huggingface.co/Rostlab/prot_bert_bfd) and trained with a novel vocabulary extension pipeline called MELD. cdsBERT offers a highly biologically relevant latent space with excellent EC number prediction surpassing ProtBERT. ## How to use ```python # Imports import re import torch import torch.nn.functional as F from transformers import BertForMaskedLM, BertTokenizer model = BertForMaskedLM.from_pretrained('lhallee/cdsBERT') # load model tokenizer = BertTokenizer.from_pretrained('lhallee/cdsBERT') # load tokenizer device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # gather device model.to(device) # move to device model.eval() # put in eval mode sequence = '(ZEVLPYGDEKLSPYGDGGDVGQIFsC#LQDTNNFFGAgQNK%OPKLGQIG%SK%uuieddRidDVLkn(TDK@pp^v]' # CCDS207.1|Hs110|chr1 sequence = ' '.join(list(sequence)) # need spaces in-between codons example = tokenizer(sequence, return_tensors='pt', padding=False).to(device) # tokenize example with torch.no_grad(): matrix_embedding = model(**example).last_hidden_state.cpu() vector_embedding = matrix_embedding.mean(dim=0) ``` ## Intended use and limitations cdsBERT serves as a general purpose ## Our lab The [Gleghorn lab](https://www.gleghornlab.com/) is an interdiciplinary research group at the University of Delaware that focuses on solving translational problems with our expertise in engineering, biology, and chemistry. We develop inexpensive and reliable tools to study organ development, maternal-fetal health, and drug delivery. Recently we have begun exploration into protein language models and strive to make protein design and annotation accessible. ## Please cite Coming soon!