--- base_model: google/pegasus-xsum tags: - generated_from_trainer metrics: - rouge - precision - recall - f1 model-index: - name: LLM_Teached_Pegasus_50k results: [] --- # LLM_Teached_Pegasus_50k This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6541 - Rouge1: 0.4665 - Rouge2: 0.2182 - Rougel: 0.3824 - Rougelsum: 0.3824 - Gen Len: 26.5458 - Precision: 0.9101 - Recall: 0.9085 - F1: 0.9092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | F1 | Gen Len | Validation Loss | Precision | Recall | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:------:|:-------:|:---------------:|:---------:|:------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 390 | 0.9034 | 26.2967 | 1.8258 | 0.9049 | 0.9023 | 0.4338 | 0.1906 | 0.3496 | 0.3498 | | 2.1621 | 2.0 | 781 | 0.9054 | 26.2727 | 1.7537 | 0.9068 | 0.9044 | 0.4449 | 0.2005 | 0.3633 | 0.3633 | | 1.8794 | 3.0 | 1172 | 0.9066 | 26.4345 | 1.7268 | 0.9078 | 0.9058 | 0.4518 | 0.2061 | 0.3696 | 0.3695 | | 1.8271 | 4.0 | 1560 | 0.9069 | 26.3971 | 1.7157 | 0.9082 | 0.906 | 0.4539 | 0.2075 | 0.3716 | 0.3714 | | 1.8271 | 5.0 | 1951 | 0.9074 | 26.3015 | 1.7033 | 0.9087 | 0.9065 | 0.4561 | 0.2098 | 0.3735 | 0.3734 | | 1.8067 | 6.0 | 2340 | 0.9077 | 26.4389 | 1.6897 | 0.9089 | 0.9069 | 0.4592 | 0.2114 | 0.3762 | 0.3759 | | 1.7833 | 7.0 | 2731 | 0.9079 | 26.3745 | 1.6819 | 0.9092 | 0.9071 | 0.4598 | 0.2115 | 0.3764 | 0.376 | | 1.7683 | 8.0 | 3120 | 1.6763 | 0.4621 | 0.2133 | 0.3791 | 0.3789 | 26.6204| 0.9094 | 0.9076 | 0.9083 | | 1.7559 | 9.0 | 3511 | 1.6662 | 0.4632 | 0.215 | 0.38 | 0.3799 | 26.424 | 0.9098 | 0.9078 | 0.9086 | | 1.7559 | 10.0 | 3902 | 1.6594 | 0.4651 | 0.2168 | 0.3812 | 0.3812 | 26.5425| 0.9099 | 0.9082 | 0.9089 | | 1.7357 | 11.0 | 4293 | 1.6555 | 0.4663 | 0.2178 | 0.3824 | 0.3823 | 26.6051| 0.91 | 0.9086 | 0.9091 | | 1.7297 | 11.99 | 4680 | 1.6541 | 0.4665 | 0.2182 | 0.3824 | 0.3824 | 26.5458| 0.9101 | 0.9085 | 0.9092 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0