File size: 3,757 Bytes
06bbcd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: google/pegasus-large
tags:
- generated_from_trainer
metrics:
- rouge
- precision
- recall
- f1
model-index:
- name: LLM_Teached_Pegasus_FS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LLM_Teached_Pegasus_FS

This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6167
- Rouge1: 0.4649
- Rouge2: 0.2096
- Rougel: 0.3686
- Rougelsum: 0.3688
- Gen Len: 30.6191
- Precision: 0.9102
- Recall: 0.9083
- F1: 0.9091

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:|
| No log        | 1.0   | 208  | 1.8075          | 0.411  | 0.1689 | 0.3152 | 0.3155    | 29.9091 | 0.901     | 0.897  | 0.8988 |
| No log        | 2.0   | 417  | 1.7312          | 0.4379 | 0.1893 | 0.3442 | 0.3446    | 29.9073 | 0.9059    | 0.9024 | 0.904  |
| 2.0112        | 3.0   | 625  | 1.6987          | 0.4475 | 0.1978 | 0.352  | 0.3525    | 30.0173 | 0.9075    | 0.9039 | 0.9055 |
| 2.0112        | 4.0   | 834  | 1.6768          | 0.4514 | 0.1981 | 0.357  | 0.3573    | 30.0618 | 0.9082    | 0.9047 | 0.9063 |
| 1.7647        | 5.0   | 1042 | 1.6617          | 0.4537 | 0.2003 | 0.3592 | 0.3595    | 30.3264 | 0.9084    | 0.9055 | 0.9068 |
| 1.7647        | 6.0   | 1251 | 1.6502          | 0.4554 | 0.2021 | 0.3607 | 0.361     | 30.0827 | 0.9089    | 0.9057 | 0.9072 |
| 1.7647        | 7.0   | 1459 | 1.6416          | 0.4592 | 0.2052 | 0.3639 | 0.3641    | 30.0218 | 0.9099    | 0.9064 | 0.908  |
| 1.6948        | 8.0   | 1668 | 1.6360          | 0.4612 | 0.2054 | 0.3649 | 0.365     | 30.7827 | 0.909     | 0.9074 | 0.9081 |
| 1.6948        | 9.0   | 1876 | 1.6302          | 0.4621 | 0.2062 | 0.3645 | 0.3647    | 30.6291 | 0.9095    | 0.9074 | 0.9083 |
| 1.6501        | 10.0  | 2085 | 1.6265          | 0.4606 | 0.2051 | 0.3651 | 0.3655    | 30.4818 | 0.9095    | 0.9073 | 0.9083 |
| 1.6501        | 11.0  | 2293 | 1.6230          | 0.4625 | 0.2073 | 0.3658 | 0.366     | 30.8064 | 0.9097    | 0.908  | 0.9087 |
| 1.6222        | 12.0  | 2502 | 1.6205          | 0.4644 | 0.2082 | 0.3674 | 0.3679    | 30.5527 | 0.9103    | 0.9081 | 0.909  |
| 1.6222        | 13.0  | 2710 | 1.6188          | 0.4648 | 0.2087 | 0.3681 | 0.3683    | 30.8055 | 0.9101    | 0.9083 | 0.909  |
| 1.6222        | 14.0  | 2919 | 1.6172          | 0.4654 | 0.2097 | 0.3685 | 0.3689    | 30.6709 | 0.9104    | 0.9084 | 0.9093 |
| 1.6048        | 15.0  | 3127 | 1.6169          | 0.465  | 0.21   | 0.3693 | 0.3697    | 30.6309 | 0.9104    | 0.9084 | 0.9093 |
| 1.6048        | 15.96 | 3328 | 1.6167          | 0.4649 | 0.2096 | 0.3686 | 0.3688    | 30.6191 | 0.9102    | 0.9083 | 0.9091 |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.15.0