Gokulapriyan commited on
Commit
701c5fa
1 Parent(s): ca0220f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: convnext-tiny-224-finetuned-main-gpu-20e-final
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: validation
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9875
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # convnext-tiny-224-finetuned-main-gpu-20e-final
31
+
32
+ This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0349
35
+ - Accuracy: 0.9875
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
69
+ | 0.6197 | 1.0 | 551 | 0.5899 | 0.7440 |
70
+ | 0.3906 | 2.0 | 1102 | 0.3245 | 0.8717 |
71
+ | 0.3161 | 3.0 | 1653 | 0.2228 | 0.9135 |
72
+ | 0.2323 | 4.0 | 2204 | 0.1481 | 0.9446 |
73
+ | 0.2049 | 5.0 | 2755 | 0.1100 | 0.9589 |
74
+ | 0.1453 | 6.0 | 3306 | 0.0887 | 0.9671 |
75
+ | 0.1786 | 7.0 | 3857 | 0.0796 | 0.9702 |
76
+ | 0.1576 | 8.0 | 4408 | 0.0635 | 0.9767 |
77
+ | 0.1584 | 9.0 | 4959 | 0.0563 | 0.9798 |
78
+ | 0.122 | 10.0 | 5510 | 0.0570 | 0.9793 |
79
+ | 0.1138 | 11.0 | 6061 | 0.0526 | 0.9819 |
80
+ | 0.1116 | 12.0 | 6612 | 0.0498 | 0.9832 |
81
+ | 0.0876 | 13.0 | 7163 | 0.0497 | 0.9830 |
82
+ | 0.0956 | 14.0 | 7714 | 0.0403 | 0.9855 |
83
+ | 0.0892 | 15.0 | 8265 | 0.0414 | 0.9855 |
84
+ | 0.0807 | 16.0 | 8816 | 0.0425 | 0.9861 |
85
+ | 0.0959 | 17.0 | 9367 | 0.0397 | 0.9866 |
86
+ | 0.0847 | 18.0 | 9918 | 0.0373 | 0.9874 |
87
+ | 0.0962 | 19.0 | 10469 | 0.0356 | 0.9870 |
88
+ | 0.0731 | 20.0 | 11020 | 0.0349 | 0.9875 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.26.1
94
+ - Pytorch 1.13.1+cu116
95
+ - Datasets 2.10.1
96
+ - Tokenizers 0.13.2