File size: 3,064 Bytes
d81ac6e 43cf768 d81ac6e 43cf768 d81ac6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9916666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0251
- Accuracy: 0.9917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5767 | 1.0 | 551 | 0.5565 | 0.7463 |
| 0.3985 | 2.0 | 1102 | 0.3165 | 0.8711 |
| 0.2988 | 3.0 | 1653 | 0.1835 | 0.9293 |
| 0.2449 | 4.0 | 2204 | 0.1150 | 0.9572 |
| 0.2037 | 5.0 | 2755 | 0.0993 | 0.9632 |
| 0.1646 | 6.0 | 3306 | 0.0750 | 0.9717 |
| 0.1995 | 7.0 | 3857 | 0.0610 | 0.9776 |
| 0.1659 | 8.0 | 4408 | 0.0485 | 0.9815 |
| 0.1449 | 9.0 | 4959 | 0.0505 | 0.9821 |
| 0.1315 | 10.0 | 5510 | 0.0444 | 0.9843 |
| 0.102 | 11.0 | 6061 | 0.0440 | 0.9838 |
| 0.1039 | 12.0 | 6612 | 0.0359 | 0.9870 |
| 0.0798 | 13.0 | 7163 | 0.0393 | 0.9869 |
| 0.1033 | 14.0 | 7714 | 0.0343 | 0.9890 |
| 0.078 | 15.0 | 8265 | 0.0298 | 0.9902 |
| 0.0765 | 16.0 | 8816 | 0.0299 | 0.9901 |
| 0.0769 | 17.0 | 9367 | 0.0275 | 0.9908 |
| 0.0751 | 18.0 | 9918 | 0.0271 | 0.9910 |
| 0.0822 | 19.0 | 10469 | 0.0251 | 0.9917 |
| 0.0756 | 20.0 | 11020 | 0.0254 | 0.9913 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|