Gokulapriyan's picture
update model card README.md
d81ac6e
|
raw
history blame
3.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9913265306122448

swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0254
  • Accuracy: 0.9913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5767 1.0 551 0.5565 0.7463
0.3985 2.0 1102 0.3165 0.8711
0.2988 3.0 1653 0.1835 0.9293
0.2449 4.0 2204 0.1150 0.9572
0.2037 5.0 2755 0.0993 0.9632
0.1646 6.0 3306 0.0750 0.9717
0.1995 7.0 3857 0.0610 0.9776
0.1659 8.0 4408 0.0485 0.9815
0.1449 9.0 4959 0.0505 0.9821
0.1315 10.0 5510 0.0444 0.9843
0.102 11.0 6061 0.0440 0.9838
0.1039 12.0 6612 0.0359 0.9870
0.0798 13.0 7163 0.0393 0.9869
0.1033 14.0 7714 0.0343 0.9890
0.078 15.0 8265 0.0298 0.9902
0.0765 16.0 8816 0.0299 0.9901
0.0769 17.0 9367 0.0275 0.9908
0.0751 18.0 9918 0.0271 0.9910
0.0822 19.0 10469 0.0251 0.9917
0.0756 20.0 11020 0.0254 0.9913

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2