--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9913265306122448 --- # swin-tiny-patch4-window7-224-finetuned-main-gpu-20e-final This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0254 - Accuracy: 0.9913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5767 | 1.0 | 551 | 0.5565 | 0.7463 | | 0.3985 | 2.0 | 1102 | 0.3165 | 0.8711 | | 0.2988 | 3.0 | 1653 | 0.1835 | 0.9293 | | 0.2449 | 4.0 | 2204 | 0.1150 | 0.9572 | | 0.2037 | 5.0 | 2755 | 0.0993 | 0.9632 | | 0.1646 | 6.0 | 3306 | 0.0750 | 0.9717 | | 0.1995 | 7.0 | 3857 | 0.0610 | 0.9776 | | 0.1659 | 8.0 | 4408 | 0.0485 | 0.9815 | | 0.1449 | 9.0 | 4959 | 0.0505 | 0.9821 | | 0.1315 | 10.0 | 5510 | 0.0444 | 0.9843 | | 0.102 | 11.0 | 6061 | 0.0440 | 0.9838 | | 0.1039 | 12.0 | 6612 | 0.0359 | 0.9870 | | 0.0798 | 13.0 | 7163 | 0.0393 | 0.9869 | | 0.1033 | 14.0 | 7714 | 0.0343 | 0.9890 | | 0.078 | 15.0 | 8265 | 0.0298 | 0.9902 | | 0.0765 | 16.0 | 8816 | 0.0299 | 0.9901 | | 0.0769 | 17.0 | 9367 | 0.0275 | 0.9908 | | 0.0751 | 18.0 | 9918 | 0.0271 | 0.9910 | | 0.0822 | 19.0 | 10469 | 0.0251 | 0.9917 | | 0.0756 | 20.0 | 11020 | 0.0254 | 0.9913 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2