--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-main-gpu-20e-final results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9909863945578231 --- # vit-base-patch16-224-finetuned-main-gpu-20e-final This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0285 - Accuracy: 0.9910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4852 | 1.0 | 551 | 0.4533 | 0.8042 | | 0.3033 | 2.0 | 1102 | 0.2157 | 0.9157 | | 0.2339 | 3.0 | 1653 | 0.1212 | 0.9534 | | 0.1694 | 4.0 | 2204 | 0.1076 | 0.9603 | | 0.1715 | 5.0 | 2755 | 0.0830 | 0.9692 | | 0.1339 | 6.0 | 3306 | 0.0674 | 0.9762 | | 0.1527 | 7.0 | 3857 | 0.0556 | 0.9791 | | 0.1214 | 8.0 | 4408 | 0.0455 | 0.9832 | | 0.1062 | 9.0 | 4959 | 0.0466 | 0.9829 | | 0.0974 | 10.0 | 5510 | 0.0403 | 0.9849 | | 0.0875 | 11.0 | 6061 | 0.0385 | 0.9860 | | 0.0992 | 12.0 | 6612 | 0.0376 | 0.9870 | | 0.065 | 13.0 | 7163 | 0.0392 | 0.9864 | | 0.0775 | 14.0 | 7714 | 0.0344 | 0.9890 | | 0.0544 | 15.0 | 8265 | 0.0362 | 0.9888 | | 0.0584 | 16.0 | 8816 | 0.0422 | 0.9872 | | 0.0722 | 17.0 | 9367 | 0.0314 | 0.9900 | | 0.0765 | 18.0 | 9918 | 0.0313 | 0.9908 | | 0.0696 | 19.0 | 10469 | 0.0297 | 0.9912 | | 0.0596 | 20.0 | 11020 | 0.0285 | 0.9910 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2