GoodGuyTim
commited on
Commit
•
73dc85a
1
Parent(s):
79049f3
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.65 +/- 21.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff13945a280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff13945a310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff13945a3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff13945a430>", "_build": "<function ActorCriticPolicy._build at 0x7ff13945a4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff13945a550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff13945a5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff13945a670>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff13945a700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff13945a790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff13945a820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff13945a8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff139455840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677869586167807865, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGauuby4xuW5eBboOs3yu7Mvw9G68DQHugAAgD8AAIA/83kcPsNlQrz6EK086u82u4qfsL1GXRS8AACAPwAAgD8a/W894SitugZYeLsRybE4EtJCuvocAzoAAIA/AACAPwDJ47zDEUK62py+OyzIAjg9wM06Wg+rNQAAgD8AAIA/ADxdvK6xjLozy/y7r+YiNiVkobo2+pO1AACAPwAAgD8ATJ09e+qjugsx0bmCQbS1FaUUuX5qHjUAAIA/AACAPwCAGDrhYIq6W32St2sbmLIFlgG6JYCqNgAAgD8AAIA/ppuPPa7BrLrWigi6P3AgtqFjZbqaSpE1AACAPwAAgD9moKk9w8sbvGZZ+71ZDXS8C4ODvbg3S70AAIA/AAAAADPhJj7rxbI/WXAMPzoC0L5EvTM+YOKOPQAAAAAAAAAAsyfLPY/2Rrp6PIS74sCBNU/srjqsfok6AACAPwAAAAAAGLk7FCKIuqGdIjvP1Ho2FqcnOyD0dDUAAIA/AACAPxrVGb0UnJi6TvhouFXZX7MQwyg5F66GNwAAgD8AAIA/GiuUPa4RpboO0bu5U3jKtbEocLpVItg4AACAPwAAgD8zsya5SH+YunLny7pZPNq0d99UN2YyUjQAAIA/AACAP2ZgFT440bu7OrkSOn8Oj7dhgyC9ZzQyuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf8LZreXdYkCUhpRSlIwBbJRN6AOMAXSUR0CRvFSQ5myxdX2UKGgGaAloD0MIGeQuwpTeY0CUhpRSlGgVTegDaBZHQJHDvdO6/Zd1fZQoaAZoCWgPQwhHIF7XL59kQJSGlFKUaBVN6ANoFkdAkcWkMgEEDHV9lChoBmgJaA9DCBWRYRVvYmJAlIaUUpRoFU3oA2gWR0CRx2muDBdldX2UKGgGaAloD0MIMErQX2gnYkCUhpRSlGgVTegDaBZHQJHHjH2h7E51fZQoaAZoCWgPQwivzcZKzDxlQJSGlFKUaBVN6ANoFkdAkdOOVPepGXV9lChoBmgJaA9DCJD4FWs4cmRAlIaUUpRoFU3oA2gWR0CR2elI3BHkdX2UKGgGaAloD0MIUDdQ4J1yZ0CUhpRSlGgVTegDaBZHQJHa7TSb6P91fZQoaAZoCWgPQwjgnudPG2ZhQJSGlFKUaBVN6ANoFkdAkdufbwjMV3V9lChoBmgJaA9DCCGRtvEntV5AlIaUUpRoFU3oA2gWR0CR32Zb6guidX2UKGgGaAloD0MIofgx5q7IY0CUhpRSlGgVTegDaBZHQJHpRyBClad1fZQoaAZoCWgPQwhqwvaTMRJkQJSGlFKUaBVN6ANoFkdAkenriZOSGXV9lChoBmgJaA9DCDtwzojSSGJAlIaUUpRoFU3oA2gWR0CR72Zjx0+1dX2UKGgGaAloD0MIuOnPfiQ3ZUCUhpRSlGgVTegDaBZHQJHylihFmWd1fZQoaAZoCWgPQwgi3jr/dplcQJSGlFKUaBVN6ANoFkdAkfRZ/9YOlXV9lChoBmgJaA9DCAVu3c3TeWBAlIaUUpRoFU3oA2gWR0CR93VE/jbSdX2UKGgGaAloD0MIx0yiXvA6Y0CUhpRSlGgVTegDaBZHQJIVWznied11fZQoaAZoCWgPQwhfJLTl3AhkQJSGlFKUaBVN6ANoFkdAkh/GOZLIxXV9lChoBmgJaA9DCPq4NlSMDGJAlIaUUpRoFU3oA2gWR0CSImQ53kgfdX2UKGgGaAloD0MIhV/q502pZUCUhpRSlGgVTegDaBZHQJIlttCRfWt1fZQoaAZoCWgPQwiFIt3PKdlfQJSGlFKUaBVN6ANoFkdAkiZQkka/AXV9lChoBmgJaA9DCCi2gqalPWZAlIaUUpRoFU3oA2gWR0CSNDrVOKwZdX2UKGgGaAloD0MIOPdXj3v7YECUhpRSlGgVTegDaBZHQJI6+4smOVB1fZQoaAZoCWgPQwiTUzvDVItgQJSGlFKUaBVN6ANoFkdAkjvi1RceKnV9lChoBmgJaA9DCGzM64hDMGVAlIaUUpRoFU3oA2gWR0CSPHiyIHkcdX2UKGgGaAloD0MIeNMtO0TMZECUhpRSlGgVTegDaBZHQJI/AtGus911fZQoaAZoCWgPQwgPYfw0bjNjQJSGlFKUaBVN6ANoFkdAkkS7+5vtMXV9lChoBmgJaA9DCGk1JO6xbWRAlIaUUpRoFU3oA2gWR0CSRRysCDEndX2UKGgGaAloD0MITb9EvHU5XECUhpRSlGgVTegDaBZHQJJIn1yvLYB1fZQoaAZoCWgPQwgrptJPOK1LQJSGlFKUaBVL7mgWR0CSSYmuTzNEdX2UKGgGaAloD0MI9pZyvtiCZkCUhpRSlGgVTegDaBZHQJJLPfDUExJ1fZQoaAZoCWgPQwhxGw3grTJiQJSGlFKUaBVN6ANoFkdAkky1ImPYF3V9lChoBmgJaA9DCIjZy7bTl2ZAlIaUUpRoFU3oA2gWR0CSTx+5vtMPdX2UKGgGaAloD0MIcQSpFDtiY0CUhpRSlGgVTegDaBZHQJJxAs7MgU11fZQoaAZoCWgPQwgrFOl+zt9gQJSGlFKUaBVN6ANoFkdAknf6YRdyDXV9lChoBmgJaA9DCHGNz2T/ulpAlIaUUpRoFU3oA2gWR0CSebb349HMdX2UKGgGaAloD0MIF7ZmKy8cZUCUhpRSlGgVTegDaBZHQJJ7Yh6jWTZ1fZQoaAZoCWgPQwg/kLxzqENkQJSGlFKUaBVN6ANoFkdAknuEPQOWjXV9lChoBmgJaA9DCNjSo6meHmFAlIaUUpRoFU3oA2gWR0CShzwF1SwXdX2UKGgGaAloD0MIF4IclLDYZECUhpRSlGgVTegDaBZHQJKMzQtz0Yl1fZQoaAZoCWgPQwhFveDTnFhlQJSGlFKUaBVN6ANoFkdAko4MdxQzlHV9lChoBmgJaA9DCNtPxvgwvmFAlIaUUpRoFU3oA2gWR0CSkqjsD4gzdX2UKGgGaAloD0MIDag3o2bjYUCUhpRSlGgVTegDaBZHQJKba8274BV1fZQoaAZoCWgPQwjK372jRjNjQJSGlFKUaBVN6ANoFkdAkpv4cinpCHV9lChoBmgJaA9DCKSqCaJuZWJAlIaUUpRoFU3oA2gWR0CSoMbtqpLmdX2UKGgGaAloD0MIR+Umaumza0CUhpRSlGgVTXYDaBZHQJKhqKyfL9x1fZQoaAZoCWgPQwg/c9annKhmQJSGlFKUaBVN6ANoFkdAkqGo8IRh+nV9lChoBmgJaA9DCBMQk3ChyGJAlIaUUpRoFU3oA2gWR0CSo0uZCv5hdX2UKGgGaAloD0MIGZC93v0FY0CUhpRSlGgVTegDaBZHQJKklt52Qnx1fZQoaAZoCWgPQwhu3jgpzDMrwJSGlFKUaBVL9WgWR0CSwRSt/4IsdX2UKGgGaAloD0MI2EenrnxoYUCUhpRSlGgVTegDaBZHQJLC3MibDuV1fZQoaAZoCWgPQwjuXYO+dMdkQJSGlFKUaBVN6ANoFkdAksmh6nivPnV9lChoBmgJaA9DCHQmbapueGFAlIaUUpRoFU3oA2gWR0CSy9r3TNMXdX2UKGgGaAloD0MIFf93RIVOW0CUhpRSlGgVTegDaBZHQJLN+A+Y+jd1fZQoaAZoCWgPQwhaSwFpfwlhQJSGlFKUaBVN6ANoFkdAks4kDEFW4nV9lChoBmgJaA9DCA034PNDJHFAlIaUUpRoFU3QAWgWR0CS05pLVWjodX2UKGgGaAloD0MItMu3Piy2ZkCUhpRSlGgVTegDaBZHQJLa0CSzPbB1fZQoaAZoCWgPQwjVsN8T6yljQJSGlFKUaBVN6ANoFkdAkt+S4jKPn3V9lChoBmgJaA9DCFotsMdEeWdAlIaUUpRoFU3oA2gWR0CS4Fg4ffXPdX2UKGgGaAloD0MI4uoAiLtkTkCUhpRSlGgVTQsBaBZHQJLiS7f51vF1fZQoaAZoCWgPQwh3E3zT9EldQJSGlFKUaBVN6ANoFkdAkuLzjzZpSXV9lChoBmgJaA9DCBYUBmUaM15AlIaUUpRoFU3oA2gWR0CS596rvLHNdX2UKGgGaAloD0MIPGpMiLlWZECUhpRSlGgVTegDaBZHQJLoMlMRHwx1fZQoaAZoCWgPQwgW9rTD3z1hQJSGlFKUaBVN6ANoFkdAkusQCGN70HV9lChoBmgJaA9DCJlFKLYCamNAlIaUUpRoFU3oA2gWR0CS685zYEntdX2UKGgGaAloD0MIIXU7+8p4XkCUhpRSlGgVTegDaBZHQJLtPr8iwB51fZQoaAZoCWgPQwhrR3GOurFgQJSGlFKUaBVN6ANoFkdAkvgQ93bEgnV9lChoBmgJaA9DCMb4MHtZPGVAlIaUUpRoFU3oA2gWR0CTEnAbyYoidX2UKGgGaAloD0MIH4DUJk4lYUCUhpRSlGgVTegDaBZHQJMZHfEXLvF1fZQoaAZoCWgPQwhLrmLxG+JjQJSGlFKUaBVN6ANoFkdAkxqqSs8xK3V9lChoBmgJaA9DCNPAj2rYL2NAlIaUUpRoFU3oA2gWR0CTHDVoYekpdX2UKGgGaAloD0MI/5Hp0GnBYUCUhpRSlGgVTegDaBZHQJMcUUh3aBZ1fZQoaAZoCWgPQwgFiljEsKdkQJSGlFKUaBVN6ANoFkdAkyYyvTw2EXV9lChoBmgJaA9DCFhwP+CBVmdAlIaUUpRoFU3oA2gWR0CTK0AZsKsudX2UKGgGaAloD0MISWjLuZRSZkCUhpRSlGgVTegDaBZHQJMsIB1cMVl1fZQoaAZoCWgPQwi0ccRafPhfQJSGlFKUaBVN6ANoFkdAky5ZMHryD3V9lChoBmgJaA9DCLbXgt4bbWZAlIaUUpRoFU3oA2gWR0CTLxawUxmDdX2UKGgGaAloD0MITdaoh2gDZECUhpRSlGgVTegDaBZHQJM0rSKFZgZ1fZQoaAZoCWgPQwgrhxbZTphkQJSGlFKUaBVN6ANoFkdAkzUUJ8fFJnV9lChoBmgJaA9DCPol4q1zwmBAlIaUUpRoFU3oA2gWR0CTOMEvTPSldX2UKGgGaAloD0MI7PoFu+HFYUCUhpRSlGgVTegDaBZHQJM6Cz3RG+d1fZQoaAZoCWgPQwjPoKF/gudcQJSGlFKUaBVN6ANoFkdAkzxUZrHlwXV9lChoBmgJaA9DCFGhurn4PWRAlIaUUpRoFU3oA2gWR0CTSz4TbnHOdX2UKGgGaAloD0MI/1nz46+dY0CUhpRSlGgVTegDaBZHQJNNLZrYXft1fZQoaAZoCWgPQwjyI37FGmNjQJSGlFKUaBVN6ANoFkdAk2egJkXk53V9lChoBmgJaA9DCFWhgVi2h2RAlIaUUpRoFU3oA2gWR0CTaU/0/W1/dX2UKGgGaAloD0MIoGtfQC/NXkCUhpRSlGgVTegDaBZHQJNq59Cu2Z11fZQoaAZoCWgPQwjSU+QQ8YRkQJSGlFKUaBVN6ANoFkdAk2sD/IbOvHV9lChoBmgJaA9DCPAXsyWr+kVAlIaUUpRoFUvwaBZHQJNs15NXYDl1fZQoaAZoCWgPQwgUJLa7BwxhQJSGlFKUaBVN6ANoFkdAk3dLYbsF+3V9lChoBmgJaA9DCCAKZkxBBmBAlIaUUpRoFU3oA2gWR0CTflfzz3AVdX2UKGgGaAloD0MIIlFoWfeFZECUhpRSlGgVTegDaBZHQJN/aSjgydp1fZQoaAZoCWgPQwjVCWgi7JthQJSGlFKUaBVN6ANoFkdAk4GL3sXzlXV9lChoBmgJaA9DCEjcY+lDrGNAlIaUUpRoFU3oA2gWR0CTgkBC2MKkdX2UKGgGaAloD0MILxhcc0cvYUCUhpRSlGgVTegDaBZHQJOH2+UQkHF1fZQoaAZoCWgPQwhy/FBpxNhbQJSGlFKUaBVN6ANoFkdAk4g/3JxNqXV9lChoBmgJaA9DCHL6er5memBAlIaUUpRoFU3oA2gWR0CTi6+TNdJKdX2UKGgGaAloD0MId4L91znvZECUhpRSlGgVTegDaBZHQJOMkQNCqp91fZQoaAZoCWgPQwiFP8ObNRllQJSGlFKUaBVN6ANoFkdAk45RwdbPhXV9lChoBmgJaA9DCPKxu0BJgWdAlIaUUpRoFU3oA2gWR0CTnZLfUF0QdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78e543b36cef18fb7bbd13a1496d7821ba0e535d1551dc9135055474d0940706
|
3 |
+
size 147420
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff13945a280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff13945a310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff13945a3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff13945a430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff13945a4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff13945a550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff13945a5e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff13945a670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff13945a700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff13945a790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff13945a820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff13945a8b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff139455840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677869586167807865,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGauuby4xuW5eBboOs3yu7Mvw9G68DQHugAAgD8AAIA/83kcPsNlQrz6EK086u82u4qfsL1GXRS8AACAPwAAgD8a/W894SitugZYeLsRybE4EtJCuvocAzoAAIA/AACAPwDJ47zDEUK62py+OyzIAjg9wM06Wg+rNQAAgD8AAIA/ADxdvK6xjLozy/y7r+YiNiVkobo2+pO1AACAPwAAgD8ATJ09e+qjugsx0bmCQbS1FaUUuX5qHjUAAIA/AACAPwCAGDrhYIq6W32St2sbmLIFlgG6JYCqNgAAgD8AAIA/ppuPPa7BrLrWigi6P3AgtqFjZbqaSpE1AACAPwAAgD9moKk9w8sbvGZZ+71ZDXS8C4ODvbg3S70AAIA/AAAAADPhJj7rxbI/WXAMPzoC0L5EvTM+YOKOPQAAAAAAAAAAsyfLPY/2Rrp6PIS74sCBNU/srjqsfok6AACAPwAAAAAAGLk7FCKIuqGdIjvP1Ho2FqcnOyD0dDUAAIA/AACAPxrVGb0UnJi6TvhouFXZX7MQwyg5F66GNwAAgD8AAIA/GiuUPa4RpboO0bu5U3jKtbEocLpVItg4AACAPwAAgD8zsya5SH+YunLny7pZPNq0d99UN2YyUjQAAIA/AACAP2ZgFT440bu7OrkSOn8Oj7dhgyC9ZzQyuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf8LZreXdYkCUhpRSlIwBbJRN6AOMAXSUR0CRvFSQ5myxdX2UKGgGaAloD0MIGeQuwpTeY0CUhpRSlGgVTegDaBZHQJHDvdO6/Zd1fZQoaAZoCWgPQwhHIF7XL59kQJSGlFKUaBVN6ANoFkdAkcWkMgEEDHV9lChoBmgJaA9DCBWRYRVvYmJAlIaUUpRoFU3oA2gWR0CRx2muDBdldX2UKGgGaAloD0MIMErQX2gnYkCUhpRSlGgVTegDaBZHQJHHjH2h7E51fZQoaAZoCWgPQwivzcZKzDxlQJSGlFKUaBVN6ANoFkdAkdOOVPepGXV9lChoBmgJaA9DCJD4FWs4cmRAlIaUUpRoFU3oA2gWR0CR2elI3BHkdX2UKGgGaAloD0MIUDdQ4J1yZ0CUhpRSlGgVTegDaBZHQJHa7TSb6P91fZQoaAZoCWgPQwjgnudPG2ZhQJSGlFKUaBVN6ANoFkdAkdufbwjMV3V9lChoBmgJaA9DCCGRtvEntV5AlIaUUpRoFU3oA2gWR0CR32Zb6guidX2UKGgGaAloD0MIofgx5q7IY0CUhpRSlGgVTegDaBZHQJHpRyBClad1fZQoaAZoCWgPQwhqwvaTMRJkQJSGlFKUaBVN6ANoFkdAkenriZOSGXV9lChoBmgJaA9DCDtwzojSSGJAlIaUUpRoFU3oA2gWR0CR72Zjx0+1dX2UKGgGaAloD0MIuOnPfiQ3ZUCUhpRSlGgVTegDaBZHQJHylihFmWd1fZQoaAZoCWgPQwgi3jr/dplcQJSGlFKUaBVN6ANoFkdAkfRZ/9YOlXV9lChoBmgJaA9DCAVu3c3TeWBAlIaUUpRoFU3oA2gWR0CR93VE/jbSdX2UKGgGaAloD0MIx0yiXvA6Y0CUhpRSlGgVTegDaBZHQJIVWznied11fZQoaAZoCWgPQwhfJLTl3AhkQJSGlFKUaBVN6ANoFkdAkh/GOZLIxXV9lChoBmgJaA9DCPq4NlSMDGJAlIaUUpRoFU3oA2gWR0CSImQ53kgfdX2UKGgGaAloD0MIhV/q502pZUCUhpRSlGgVTegDaBZHQJIlttCRfWt1fZQoaAZoCWgPQwiFIt3PKdlfQJSGlFKUaBVN6ANoFkdAkiZQkka/AXV9lChoBmgJaA9DCCi2gqalPWZAlIaUUpRoFU3oA2gWR0CSNDrVOKwZdX2UKGgGaAloD0MIOPdXj3v7YECUhpRSlGgVTegDaBZHQJI6+4smOVB1fZQoaAZoCWgPQwiTUzvDVItgQJSGlFKUaBVN6ANoFkdAkjvi1RceKnV9lChoBmgJaA9DCGzM64hDMGVAlIaUUpRoFU3oA2gWR0CSPHiyIHkcdX2UKGgGaAloD0MIeNMtO0TMZECUhpRSlGgVTegDaBZHQJI/AtGus911fZQoaAZoCWgPQwgPYfw0bjNjQJSGlFKUaBVN6ANoFkdAkkS7+5vtMXV9lChoBmgJaA9DCGk1JO6xbWRAlIaUUpRoFU3oA2gWR0CSRRysCDEndX2UKGgGaAloD0MITb9EvHU5XECUhpRSlGgVTegDaBZHQJJIn1yvLYB1fZQoaAZoCWgPQwgrptJPOK1LQJSGlFKUaBVL7mgWR0CSSYmuTzNEdX2UKGgGaAloD0MI9pZyvtiCZkCUhpRSlGgVTegDaBZHQJJLPfDUExJ1fZQoaAZoCWgPQwhxGw3grTJiQJSGlFKUaBVN6ANoFkdAkky1ImPYF3V9lChoBmgJaA9DCIjZy7bTl2ZAlIaUUpRoFU3oA2gWR0CSTx+5vtMPdX2UKGgGaAloD0MIcQSpFDtiY0CUhpRSlGgVTegDaBZHQJJxAs7MgU11fZQoaAZoCWgPQwgrFOl+zt9gQJSGlFKUaBVN6ANoFkdAknf6YRdyDXV9lChoBmgJaA9DCHGNz2T/ulpAlIaUUpRoFU3oA2gWR0CSebb349HMdX2UKGgGaAloD0MIF7ZmKy8cZUCUhpRSlGgVTegDaBZHQJJ7Yh6jWTZ1fZQoaAZoCWgPQwg/kLxzqENkQJSGlFKUaBVN6ANoFkdAknuEPQOWjXV9lChoBmgJaA9DCNjSo6meHmFAlIaUUpRoFU3oA2gWR0CShzwF1SwXdX2UKGgGaAloD0MIF4IclLDYZECUhpRSlGgVTegDaBZHQJKMzQtz0Yl1fZQoaAZoCWgPQwhFveDTnFhlQJSGlFKUaBVN6ANoFkdAko4MdxQzlHV9lChoBmgJaA9DCNtPxvgwvmFAlIaUUpRoFU3oA2gWR0CSkqjsD4gzdX2UKGgGaAloD0MIDag3o2bjYUCUhpRSlGgVTegDaBZHQJKba8274BV1fZQoaAZoCWgPQwjK372jRjNjQJSGlFKUaBVN6ANoFkdAkpv4cinpCHV9lChoBmgJaA9DCKSqCaJuZWJAlIaUUpRoFU3oA2gWR0CSoMbtqpLmdX2UKGgGaAloD0MIR+Umaumza0CUhpRSlGgVTXYDaBZHQJKhqKyfL9x1fZQoaAZoCWgPQwg/c9annKhmQJSGlFKUaBVN6ANoFkdAkqGo8IRh+nV9lChoBmgJaA9DCBMQk3ChyGJAlIaUUpRoFU3oA2gWR0CSo0uZCv5hdX2UKGgGaAloD0MIGZC93v0FY0CUhpRSlGgVTegDaBZHQJKklt52Qnx1fZQoaAZoCWgPQwhu3jgpzDMrwJSGlFKUaBVL9WgWR0CSwRSt/4IsdX2UKGgGaAloD0MI2EenrnxoYUCUhpRSlGgVTegDaBZHQJLC3MibDuV1fZQoaAZoCWgPQwjuXYO+dMdkQJSGlFKUaBVN6ANoFkdAksmh6nivPnV9lChoBmgJaA9DCHQmbapueGFAlIaUUpRoFU3oA2gWR0CSy9r3TNMXdX2UKGgGaAloD0MIFf93RIVOW0CUhpRSlGgVTegDaBZHQJLN+A+Y+jd1fZQoaAZoCWgPQwhaSwFpfwlhQJSGlFKUaBVN6ANoFkdAks4kDEFW4nV9lChoBmgJaA9DCA034PNDJHFAlIaUUpRoFU3QAWgWR0CS05pLVWjodX2UKGgGaAloD0MItMu3Piy2ZkCUhpRSlGgVTegDaBZHQJLa0CSzPbB1fZQoaAZoCWgPQwjVsN8T6yljQJSGlFKUaBVN6ANoFkdAkt+S4jKPn3V9lChoBmgJaA9DCFotsMdEeWdAlIaUUpRoFU3oA2gWR0CS4Fg4ffXPdX2UKGgGaAloD0MI4uoAiLtkTkCUhpRSlGgVTQsBaBZHQJLiS7f51vF1fZQoaAZoCWgPQwh3E3zT9EldQJSGlFKUaBVN6ANoFkdAkuLzjzZpSXV9lChoBmgJaA9DCBYUBmUaM15AlIaUUpRoFU3oA2gWR0CS596rvLHNdX2UKGgGaAloD0MIPGpMiLlWZECUhpRSlGgVTegDaBZHQJLoMlMRHwx1fZQoaAZoCWgPQwgW9rTD3z1hQJSGlFKUaBVN6ANoFkdAkusQCGN70HV9lChoBmgJaA9DCJlFKLYCamNAlIaUUpRoFU3oA2gWR0CS685zYEntdX2UKGgGaAloD0MIIXU7+8p4XkCUhpRSlGgVTegDaBZHQJLtPr8iwB51fZQoaAZoCWgPQwhrR3GOurFgQJSGlFKUaBVN6ANoFkdAkvgQ93bEgnV9lChoBmgJaA9DCMb4MHtZPGVAlIaUUpRoFU3oA2gWR0CTEnAbyYoidX2UKGgGaAloD0MIH4DUJk4lYUCUhpRSlGgVTegDaBZHQJMZHfEXLvF1fZQoaAZoCWgPQwhLrmLxG+JjQJSGlFKUaBVN6ANoFkdAkxqqSs8xK3V9lChoBmgJaA9DCNPAj2rYL2NAlIaUUpRoFU3oA2gWR0CTHDVoYekpdX2UKGgGaAloD0MI/5Hp0GnBYUCUhpRSlGgVTegDaBZHQJMcUUh3aBZ1fZQoaAZoCWgPQwgFiljEsKdkQJSGlFKUaBVN6ANoFkdAkyYyvTw2EXV9lChoBmgJaA9DCFhwP+CBVmdAlIaUUpRoFU3oA2gWR0CTK0AZsKsudX2UKGgGaAloD0MISWjLuZRSZkCUhpRSlGgVTegDaBZHQJMsIB1cMVl1fZQoaAZoCWgPQwi0ccRafPhfQJSGlFKUaBVN6ANoFkdAky5ZMHryD3V9lChoBmgJaA9DCLbXgt4bbWZAlIaUUpRoFU3oA2gWR0CTLxawUxmDdX2UKGgGaAloD0MITdaoh2gDZECUhpRSlGgVTegDaBZHQJM0rSKFZgZ1fZQoaAZoCWgPQwgrhxbZTphkQJSGlFKUaBVN6ANoFkdAkzUUJ8fFJnV9lChoBmgJaA9DCPol4q1zwmBAlIaUUpRoFU3oA2gWR0CTOMEvTPSldX2UKGgGaAloD0MI7PoFu+HFYUCUhpRSlGgVTegDaBZHQJM6Cz3RG+d1fZQoaAZoCWgPQwjPoKF/gudcQJSGlFKUaBVN6ANoFkdAkzxUZrHlwXV9lChoBmgJaA9DCFGhurn4PWRAlIaUUpRoFU3oA2gWR0CTSz4TbnHOdX2UKGgGaAloD0MI/1nz46+dY0CUhpRSlGgVTegDaBZHQJNNLZrYXft1fZQoaAZoCWgPQwjyI37FGmNjQJSGlFKUaBVN6ANoFkdAk2egJkXk53V9lChoBmgJaA9DCFWhgVi2h2RAlIaUUpRoFU3oA2gWR0CTaU/0/W1/dX2UKGgGaAloD0MIoGtfQC/NXkCUhpRSlGgVTegDaBZHQJNq59Cu2Z11fZQoaAZoCWgPQwjSU+QQ8YRkQJSGlFKUaBVN6ANoFkdAk2sD/IbOvHV9lChoBmgJaA9DCPAXsyWr+kVAlIaUUpRoFUvwaBZHQJNs15NXYDl1fZQoaAZoCWgPQwgUJLa7BwxhQJSGlFKUaBVN6ANoFkdAk3dLYbsF+3V9lChoBmgJaA9DCCAKZkxBBmBAlIaUUpRoFU3oA2gWR0CTflfzz3AVdX2UKGgGaAloD0MIIlFoWfeFZECUhpRSlGgVTegDaBZHQJN/aSjgydp1fZQoaAZoCWgPQwjVCWgi7JthQJSGlFKUaBVN6ANoFkdAk4GL3sXzlXV9lChoBmgJaA9DCEjcY+lDrGNAlIaUUpRoFU3oA2gWR0CTgkBC2MKkdX2UKGgGaAloD0MILxhcc0cvYUCUhpRSlGgVTegDaBZHQJOH2+UQkHF1fZQoaAZoCWgPQwhy/FBpxNhbQJSGlFKUaBVN6ANoFkdAk4g/3JxNqXV9lChoBmgJaA9DCHL6er5memBAlIaUUpRoFU3oA2gWR0CTi6+TNdJKdX2UKGgGaAloD0MId4L91znvZECUhpRSlGgVTegDaBZHQJOMkQNCqp91fZQoaAZoCWgPQwiFP8ObNRllQJSGlFKUaBVN6ANoFkdAk45RwdbPhXV9lChoBmgJaA9DCPKxu0BJgWdAlIaUUpRoFU3oA2gWR0CTnZLfUF0QdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbe9cb3106ddda27d4d33216a53826154ad0255135d57316aaa24c80b12fb273
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:355d6ee576d2a1e1a5f906a66462f9a1461e168d1435a68ecb709ef488423f4f
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (175 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.6526693943799, "std_reward": 21.806559121491215, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-03T19:14:41.921733"}
|