Upload prompt_tune_phi3.ipynb with huggingface_hub
Browse files- prompt_tune_phi3.ipynb +246 -0
prompt_tune_phi3.ipynb
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "3890292a-c99e-4367-955d-5883b93dba36",
|
7 |
+
"metadata": {
|
8 |
+
"scrolled": true
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"!pip install -q peft transformers datasets huggingface_hub\n",
|
13 |
+
"!pip install flash-attn --no-build-isolation"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 20,
|
19 |
+
"id": "f1cc378f-afb6-441f-a4c6-2ec427b4cd4b",
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer, default_data_collator, get_linear_schedule_with_warmup\n",
|
24 |
+
"from peft import get_peft_config, get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType, PeftType\n",
|
25 |
+
"import torch\n",
|
26 |
+
"from datasets import load_dataset\n",
|
27 |
+
"import os\n",
|
28 |
+
"from torch.utils.data import DataLoader\n",
|
29 |
+
"from tqdm import tqdm\n",
|
30 |
+
"from huggingface_hub import notebook_login\n",
|
31 |
+
"from huggingface_hub import HfApi"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"id": "e4ab50d7-a4c9-4246-acd8-8875b87fe0da",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"notebook_login()"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 23,
|
47 |
+
"id": "8a1cb1f9-b89d-4cac-a595-44e1e0ef85b2",
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"text/plain": [
|
53 |
+
"CommitInfo(commit_url='https://huggingface.co/Granther/prompt-tuned-phi3/commit/1a005d8478e96bc972732562f77846878c4ba7b3', commit_message='Upload prompt_tune_phi3.ipnb with huggingface_hub', commit_description='', oid='1a005d8478e96bc972732562f77846878c4ba7b3', pr_url=None, pr_revision=None, pr_num=None)"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
"execution_count": 23,
|
57 |
+
"metadata": {},
|
58 |
+
"output_type": "execute_result"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"api = HfApi()\n",
|
63 |
+
"api.upload_file(path_or_fileobj='prompt_tune_phi3.ipynb',\n",
|
64 |
+
" path_in_repo='prompt_tune_phi3.ipynb',\n",
|
65 |
+
" repo_id='Granther/prompt-tuned-phi3',\n",
|
66 |
+
" repo_type='model'\n",
|
67 |
+
" )"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 6,
|
73 |
+
"id": "6cad1e5c-038f-4e75-8c3f-8ce0a43713a4",
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [],
|
76 |
+
"source": [
|
77 |
+
"device = 'cuda'\n",
|
78 |
+
"\n",
|
79 |
+
"model_id = 'microsoft/Phi-3-mini-128k-instruct'\n",
|
80 |
+
"\n",
|
81 |
+
"peft_conf = PromptTuningConfig(\n",
|
82 |
+
" peft_type=PeftType.PROMPT_TUNING, # what kind of peft\n",
|
83 |
+
" task_type=TaskType.CAUSAL_LM, # config task\n",
|
84 |
+
" prompt_tuning_init=PromptTuningInit.TEXT, # Set to 'TEXT' to use prompt_tuning_init_text\n",
|
85 |
+
" num_virtual_tokens=8, # x times the number of hidden transformer layers\n",
|
86 |
+
" prompt_tuning_init_text=\"Classify if the tweet is a complaint or not:\",\n",
|
87 |
+
" tokenizer_name_or_path=model_id\n",
|
88 |
+
")\n",
|
89 |
+
"\n",
|
90 |
+
"dataset_name = \"twitter_complaints\"\n",
|
91 |
+
"checkpoint_name = f\"{dataset_name}_{model_id}_{peft_conf.peft_type}_{peft_conf.task_type}_v1.pt\".replace(\n",
|
92 |
+
" \"/\", \"_\"\n",
|
93 |
+
")\n",
|
94 |
+
"\n",
|
95 |
+
"text_col = 'Tweet text'\n",
|
96 |
+
"lab_col = 'text_label'\n",
|
97 |
+
"max_len = 64\n",
|
98 |
+
"lr = 3e-2\n",
|
99 |
+
"epochs = 50\n",
|
100 |
+
"batch_size = 8"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 7,
|
106 |
+
"id": "6f677839-ef23-428a-bcfe-f596590804ca",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"dataset = load_dataset('ought/raft', dataset_name, split='train')"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 8,
|
116 |
+
"id": "c0c05613-7941-4959-ada9-49ed1093bec4",
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/plain": [
|
122 |
+
"['Unlabeled', 'complaint', 'no complaint']"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
"execution_count": 8,
|
126 |
+
"metadata": {},
|
127 |
+
"output_type": "execute_result"
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"dataset.features['Label'].names\n",
|
132 |
+
"#>>> ['Unlabeled', 'complaint', 'no complaint']"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": 11,
|
138 |
+
"id": "14e2bc8b-b4e3-49c9-ae2b-5946e412caa5",
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"application/vnd.jupyter.widget-view+json": {
|
144 |
+
"model_id": "d9e958c687dd493880d18d4f1621dad9",
|
145 |
+
"version_major": 2,
|
146 |
+
"version_minor": 0
|
147 |
+
},
|
148 |
+
"text/plain": [
|
149 |
+
"Map (num_proc=10): 0%| | 0/50 [00:00<?, ? examples/s]"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
"metadata": {},
|
153 |
+
"output_type": "display_data"
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"data": {
|
157 |
+
"text/plain": [
|
158 |
+
"'Unlabeled'"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"execution_count": 11,
|
162 |
+
"metadata": {},
|
163 |
+
"output_type": "execute_result"
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"# Create lambda function\n",
|
168 |
+
"classes = [k.replace('_', ' ') for k in dataset.features['Label'].names]\n",
|
169 |
+
"dataset = dataset.map(\n",
|
170 |
+
" lambda x: {'text_label': [classes[label] for label in x['Label']]},\n",
|
171 |
+
" batched=True,\n",
|
172 |
+
" num_proc=10,\n",
|
173 |
+
")\n",
|
174 |
+
"\n",
|
175 |
+
"dataset[0]"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 16,
|
181 |
+
"id": "19f0865d-e490-4c9f-a5f4-e781ed270f47",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [
|
184 |
+
{
|
185 |
+
"name": "stderr",
|
186 |
+
"output_type": "stream",
|
187 |
+
"text": [
|
188 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
189 |
+
]
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"data": {
|
193 |
+
"text/plain": [
|
194 |
+
"[1, 853, 29880, 24025, 32000]"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
"execution_count": 16,
|
198 |
+
"metadata": {},
|
199 |
+
"output_type": "execute_result"
|
200 |
+
}
|
201 |
+
],
|
202 |
+
"source": [
|
203 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
204 |
+
"\n",
|
205 |
+
"if tokenizer.pad_token_id == None:\n",
|
206 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
207 |
+
"\n",
|
208 |
+
"target_max_len = max([len(tokenizer(class_lab)['input_ids']) for class_lab in classes])\n",
|
209 |
+
"target_max_len # max length for tokenized labels\n",
|
210 |
+
"\n",
|
211 |
+
"tokenizer(classes[0])['input_ids'] \n",
|
212 |
+
"# Ids corresponding to the tokens in the sequence\n",
|
213 |
+
"# Attention mask is a binary tensor used in the transformer block to differentiate between padding tokens and meaningful ones"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"id": "459d4f69-1d85-42e8-acac-b2c7983c3a33",
|
220 |
+
"metadata": {},
|
221 |
+
"outputs": [],
|
222 |
+
"source": []
|
223 |
+
}
|
224 |
+
],
|
225 |
+
"metadata": {
|
226 |
+
"kernelspec": {
|
227 |
+
"display_name": "Python 3 (ipykernel)",
|
228 |
+
"language": "python",
|
229 |
+
"name": "python3"
|
230 |
+
},
|
231 |
+
"language_info": {
|
232 |
+
"codemirror_mode": {
|
233 |
+
"name": "ipython",
|
234 |
+
"version": 3
|
235 |
+
},
|
236 |
+
"file_extension": ".py",
|
237 |
+
"mimetype": "text/x-python",
|
238 |
+
"name": "python",
|
239 |
+
"nbconvert_exporter": "python",
|
240 |
+
"pygments_lexer": "ipython3",
|
241 |
+
"version": "3.10.13"
|
242 |
+
}
|
243 |
+
},
|
244 |
+
"nbformat": 4,
|
245 |
+
"nbformat_minor": 5
|
246 |
+
}
|