Training completed!
Browse files
README.md
CHANGED
@@ -23,10 +23,10 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
36 |
|
37 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- F1: 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -63,14 +63,22 @@ The following hyperparameters were used during training:
|
|
63 |
- seed: 42
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
-
- num_epochs:
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.9455
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
+
value: 0.9455317055605632
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.1789
|
40 |
+
- Accuracy: 0.9455
|
41 |
+
- F1: 0.9455
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
63 |
- seed: 42
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 10
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
72 |
+
| 0.799 | 1.0 | 250 | 0.2667 | 0.92 | 0.9206 |
|
73 |
+
| 0.2043 | 2.0 | 500 | 0.1661 | 0.9345 | 0.9341 |
|
74 |
+
| 0.1359 | 3.0 | 750 | 0.1580 | 0.938 | 0.9387 |
|
75 |
+
| 0.1028 | 4.0 | 1000 | 0.1517 | 0.943 | 0.9435 |
|
76 |
+
| 0.0838 | 5.0 | 1250 | 0.1485 | 0.9385 | 0.9384 |
|
77 |
+
| 0.0691 | 6.0 | 1500 | 0.1514 | 0.94 | 0.9402 |
|
78 |
+
| 0.0578 | 7.0 | 1750 | 0.1854 | 0.9345 | 0.9338 |
|
79 |
+
| 0.0488 | 8.0 | 2000 | 0.1707 | 0.9405 | 0.9406 |
|
80 |
+
| 0.0414 | 9.0 | 2250 | 0.1822 | 0.944 | 0.9441 |
|
81 |
+
| 0.0355 | 10.0 | 2500 | 0.1789 | 0.9455 | 0.9455 |
|
82 |
|
83 |
|
84 |
### Framework versions
|