--- license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model results: [] --- # NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2634 - Precision: 0.4559 - Recall: 0.4616 - F1: 0.4587 - Accuracy: 0.9334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 71 | 0.2011 | 0.3859 | 0.3371 | 0.3598 | 0.9297 | | No log | 2.0 | 142 | 0.1970 | 0.3956 | 0.3894 | 0.3925 | 0.9283 | | No log | 3.0 | 213 | 0.2041 | 0.4140 | 0.3977 | 0.4057 | 0.9307 | | No log | 4.0 | 284 | 0.2167 | 0.4379 | 0.4110 | 0.4240 | 0.9348 | | No log | 5.0 | 355 | 0.2293 | 0.4430 | 0.4159 | 0.4290 | 0.9338 | | No log | 6.0 | 426 | 0.2447 | 0.4615 | 0.4375 | 0.4492 | 0.9356 | | No log | 7.0 | 497 | 0.2587 | 0.4601 | 0.4500 | 0.4550 | 0.9342 | | 0.0861 | 8.0 | 568 | 0.2634 | 0.4559 | 0.4616 | 0.4587 | 0.9334 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1