File size: 2,147 Bytes
f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 f12cc59 3bc6505 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-Elderly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-1b-Elderly
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4157
- Cer: 11.1137
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 8.645 | 0.2580 | 200 | 2.2625 | 43.7735 |
| 1.4937 | 0.5161 | 400 | 1.2311 | 27.9488 |
| 1.0981 | 0.7741 | 600 | 0.9801 | 23.6020 |
| 0.898 | 1.0322 | 800 | 0.8050 | 20.0658 |
| 0.7284 | 1.2902 | 1000 | 0.7320 | 18.3447 |
| 0.6644 | 1.5483 | 1200 | 0.6092 | 15.7484 |
| 0.592 | 1.8063 | 1400 | 0.5996 | 15.8893 |
| 0.4926 | 2.0643 | 1600 | 0.5654 | 14.6147 |
| 0.4054 | 2.3224 | 1800 | 0.4774 | 12.5822 |
| 0.3902 | 2.5804 | 2000 | 0.4446 | 11.9772 |
| 0.361 | 2.8385 | 2200 | 0.4157 | 11.1137 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1
|