--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: fine-tuning-Phi2-with-webglm-qa-with-lora_6 results: [] --- # fine-tuning-Phi2-with-webglm-qa-with-lora_6 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 60 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.3419 | 0.31 | 20 | 6.2616 | | 4.0421 | 0.63 | 40 | 0.8963 | | 0.6465 | 0.94 | 60 | 0.5726 | | 0.4575 | 1.26 | 80 | 0.3999 | | 0.309 | 1.57 | 100 | 0.3044 | | 0.2531 | 1.89 | 120 | 0.2605 | | 0.2235 | 2.2 | 140 | 0.2273 | | 0.1922 | 2.52 | 160 | 0.2091 | | 0.1793 | 2.83 | 180 | 0.1858 | | 0.1488 | 3.14 | 200 | 0.1734 | | 0.16 | 3.46 | 220 | 0.1646 | | 0.1497 | 3.77 | 240 | 0.1557 | | 0.1336 | 4.09 | 260 | 0.1489 | | 0.1278 | 4.4 | 280 | 0.1415 | | 0.1291 | 4.72 | 300 | 0.1392 | | 0.1244 | 5.03 | 320 | 0.1342 | | 0.1184 | 5.35 | 340 | 0.1319 | | 0.118 | 5.66 | 360 | 0.1289 | | 0.1153 | 5.97 | 380 | 0.1279 | | 0.1052 | 6.29 | 400 | 0.1250 | | 0.1058 | 6.6 | 420 | 0.1243 | | 0.1142 | 6.92 | 440 | 0.1226 | | 0.1026 | 7.23 | 460 | 0.1222 | | 0.1051 | 7.55 | 480 | 0.1214 | | 0.0977 | 7.86 | 500 | 0.1212 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0