--- library_name: transformers license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: albert-finetuned-ner-gbgb results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.5032151387102701 - name: Recall type: recall value: 0.46095590710198586 - name: F1 type: f1 value: 0.4811594202898551 - name: Accuracy type: accuracy value: 0.8898127980220168 --- # albert-finetuned-ner-gbgb This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.3371 - Precision: 0.5032 - Recall: 0.4610 - F1: 0.4812 - Accuracy: 0.8898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5379 | 1.0 | 1756 | 0.4843 | 0.4079 | 0.2740 | 0.3278 | 0.8502 | | 0.3491 | 2.0 | 3512 | 0.3726 | 0.4903 | 0.3837 | 0.4305 | 0.8778 | | 0.26 | 3.0 | 5268 | 0.3371 | 0.5032 | 0.4610 | 0.4812 | 0.8898 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.2