Create handler.py
Browse files- handler.py +31 -0
handler.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
import torch
|
4 |
+
from peft import PeftModel
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
class EndpointHandler():
|
10 |
+
def __init__(self, path=""):
|
11 |
+
base_model_path = json.load(open(os.path.join(path, "training_params.json")))["model"]
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
base_model_path,
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
low_cpu_mem_usage=True,
|
16 |
+
trust_remote_code=True,
|
17 |
+
device_map="auto",
|
18 |
+
)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True)
|
20 |
+
model = PeftModel.from_pretrained(model, path)
|
21 |
+
model = model.merge_and_unload()
|
22 |
+
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
23 |
+
|
24 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
25 |
+
inputs = data.pop("inputs", data)
|
26 |
+
parameters = data.pop("parameters", None)
|
27 |
+
if parameters is not None:
|
28 |
+
prediction = self.pipeline(inputs, **parameters)
|
29 |
+
else:
|
30 |
+
prediction = self.pipeline(inputs)
|
31 |
+
return prediction
|