YanshekWoo commited on
Commit
45e42c8
1 Parent(s): d06313e
Files changed (1) hide show
  1. README.md +570 -0
README.md CHANGED
@@ -12069,6 +12069,63 @@ model-index:
12069
  value: 89.12
12070
  task:
12071
  type: Classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12072
  - dataset:
12073
  config: default
12074
  name: MTEB AlloprofRetrieval
@@ -12360,6 +12417,23 @@ model-index:
12360
  value: 60.363
12361
  task:
12362
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12363
  - dataset:
12364
  config: default
12365
  name: MTEB BSARDRetrieval
@@ -12651,6 +12725,166 @@ model-index:
12651
  value: 25.676
12652
  task:
12653
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12654
  - dataset:
12655
  config: fr
12656
  name: MTEB MintakaRetrieval (fr)
@@ -12942,6 +13176,184 @@ model-index:
12942
  value: 32.064
12943
  task:
12944
  type: Retrieval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12945
  - dataset:
12946
  config: default
12947
  name: MTEB SICKFr
@@ -12969,6 +13381,164 @@ model-index:
12969
  value: 77.47140335069184
12970
  task:
12971
  type: STS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12972
  - dataset:
12973
  config: default
12974
  name: MTEB SyntecRetrieval
 
12069
  value: 89.12
12070
  task:
12071
  type: Classification
12072
+ - dataset:
12073
+ config: default
12074
+ name: MTEB AlloProfClusteringP2P
12075
+ revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
12076
+ split: test
12077
+ type: lyon-nlp/alloprof
12078
+ metrics:
12079
+ - type: main_score
12080
+ value: 66.7100274116735
12081
+ - type: v_measure
12082
+ value: 66.7100274116735
12083
+ - type: v_measure_std
12084
+ value: 2.065600197695283
12085
+ task:
12086
+ type: Clustering
12087
+ - dataset:
12088
+ config: default
12089
+ name: MTEB AlloProfClusteringS2S
12090
+ revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
12091
+ split: test
12092
+ type: lyon-nlp/alloprof
12093
+ metrics:
12094
+ - type: main_score
12095
+ value: 47.67572024379311
12096
+ - type: v_measure
12097
+ value: 47.67572024379311
12098
+ - type: v_measure_std
12099
+ value: 3.1905282169494953
12100
+ task:
12101
+ type: Clustering
12102
+ - dataset:
12103
+ config: default
12104
+ name: MTEB AlloprofReranking
12105
+ revision: 65393d0d7a08a10b4e348135e824f385d420b0fd
12106
+ split: test
12107
+ type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
12108
+ metrics:
12109
+ - type: main_score
12110
+ value: 75.04647907753767
12111
+ - type: map
12112
+ value: 75.04647907753767
12113
+ - type: mrr
12114
+ value: 76.25801875154207
12115
+ - type: nAUC_map_diff1
12116
+ value: 56.38279442235466
12117
+ - type: nAUC_map_max
12118
+ value: 20.009630947768642
12119
+ - type: nAUC_map_std
12120
+ value: 21.626818227466185
12121
+ - type: nAUC_mrr_diff1
12122
+ value: 56.33463291672874
12123
+ - type: nAUC_mrr_max
12124
+ value: 20.472794140230853
12125
+ - type: nAUC_mrr_std
12126
+ value: 21.491759650866392
12127
+ task:
12128
+ type: Reranking
12129
  - dataset:
12130
  config: default
12131
  name: MTEB AlloprofRetrieval
 
12417
  value: 60.363
12418
  task:
12419
  type: Retrieval
12420
+ - dataset:
12421
+ config: fr
12422
+ name: MTEB AmazonReviewsClassification (fr)
12423
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
12424
+ split: test
12425
+ type: mteb/amazon_reviews_multi
12426
+ metrics:
12427
+ - type: accuracy
12428
+ value: 52.622
12429
+ - type: f1
12430
+ value: 48.89589865194384
12431
+ - type: f1_weighted
12432
+ value: 48.89589865194384
12433
+ - type: main_score
12434
+ value: 52.622
12435
+ task:
12436
+ type: Classification
12437
  - dataset:
12438
  config: default
12439
  name: MTEB BSARDRetrieval
 
12725
  value: 25.676
12726
  task:
12727
  type: Retrieval
12728
+ - dataset:
12729
+ config: default
12730
+ name: MTEB HALClusteringS2S
12731
+ revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
12732
+ split: test
12733
+ type: lyon-nlp/clustering-hal-s2s
12734
+ metrics:
12735
+ - type: main_score
12736
+ value: 26.958035381361377
12737
+ - type: v_measure
12738
+ value: 26.958035381361377
12739
+ - type: v_measure_std
12740
+ value: 2.401353383071989
12741
+ task:
12742
+ type: Clustering
12743
+ - dataset:
12744
+ config: fr
12745
+ name: MTEB MLSUMClusteringP2P (fr)
12746
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
12747
+ split: test
12748
+ type: reciTAL/mlsum
12749
+ metrics:
12750
+ - type: main_score
12751
+ value: 46.15554988136895
12752
+ - type: v_measure
12753
+ value: 46.15554988136895
12754
+ - type: v_measure_std
12755
+ value: 2.459531525134688
12756
+ task:
12757
+ type: Clustering
12758
+ - dataset:
12759
+ config: fr
12760
+ name: MTEB MLSUMClusteringS2S (fr)
12761
+ revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
12762
+ split: test
12763
+ type: reciTAL/mlsum
12764
+ metrics:
12765
+ - type: main_score
12766
+ value: 45.73187202144909
12767
+ - type: v_measure
12768
+ value: 45.73187202144909
12769
+ - type: v_measure_std
12770
+ value: 1.6402520163270633
12771
+ task:
12772
+ type: Clustering
12773
+ - dataset:
12774
+ config: fr
12775
+ name: MTEB MTOPDomainClassification (fr)
12776
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
12777
+ split: test
12778
+ type: mteb/mtop_domain
12779
+ metrics:
12780
+ - type: accuracy
12781
+ value: 95.78766050735986
12782
+ - type: f1
12783
+ value: 95.61497706645892
12784
+ - type: f1_weighted
12785
+ value: 95.79887587161483
12786
+ - type: main_score
12787
+ value: 95.78766050735986
12788
+ task:
12789
+ type: Classification
12790
+ - dataset:
12791
+ config: fr
12792
+ name: MTEB MTOPIntentClassification (fr)
12793
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
12794
+ split: test
12795
+ type: mteb/mtop_intent
12796
+ metrics:
12797
+ - type: accuracy
12798
+ value: 80.8800501096148
12799
+ - type: f1
12800
+ value: 53.9945274705194
12801
+ - type: f1_weighted
12802
+ value: 80.94438738414857
12803
+ - type: main_score
12804
+ value: 80.8800501096148
12805
+ task:
12806
+ type: Classification
12807
+ - dataset:
12808
+ config: fra
12809
+ name: MTEB MasakhaNEWSClassification (fra)
12810
+ revision: 18193f187b92da67168c655c9973a165ed9593dd
12811
+ split: test
12812
+ type: mteb/masakhanews
12813
+ metrics:
12814
+ - type: accuracy
12815
+ value: 83.6255924170616
12816
+ - type: f1
12817
+ value: 79.70294641135138
12818
+ - type: f1_weighted
12819
+ value: 83.33457992982105
12820
+ - type: main_score
12821
+ value: 83.6255924170616
12822
+ task:
12823
+ type: Classification
12824
+ - dataset:
12825
+ config: fra
12826
+ name: MTEB MasakhaNEWSClusteringP2P (fra)
12827
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
12828
+ split: test
12829
+ type: masakhane/masakhanews
12830
+ metrics:
12831
+ - type: main_score
12832
+ value: 77.1970570860131
12833
+ - type: v_measure
12834
+ value: 77.1970570860131
12835
+ - type: v_measure_std
12836
+ value: 22.0055550035463
12837
+ task:
12838
+ type: Clustering
12839
+ - dataset:
12840
+ config: fra
12841
+ name: MTEB MasakhaNEWSClusteringS2S (fra)
12842
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
12843
+ split: test
12844
+ type: masakhane/masakhanews
12845
+ metrics:
12846
+ - type: main_score
12847
+ value: 65.92601417312947
12848
+ - type: v_measure
12849
+ value: 65.92601417312947
12850
+ - type: v_measure_std
12851
+ value: 30.421071440935687
12852
+ task:
12853
+ type: Clustering
12854
+ - dataset:
12855
+ config: fr
12856
+ name: MTEB MassiveIntentClassification (fr)
12857
+ revision: 4672e20407010da34463acc759c162ca9734bca6
12858
+ split: test
12859
+ type: mteb/amazon_massive_intent
12860
+ metrics:
12861
+ - type: accuracy
12862
+ value: 69.5359784801614
12863
+ - type: f1
12864
+ value: 64.640488940591
12865
+ - type: f1_weighted
12866
+ value: 67.85916565361048
12867
+ - type: main_score
12868
+ value: 69.5359784801614
12869
+ task:
12870
+ type: Classification
12871
+ - dataset:
12872
+ config: fr
12873
+ name: MTEB MassiveScenarioClassification (fr)
12874
+ revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
12875
+ split: test
12876
+ type: mteb/amazon_massive_scenario
12877
+ metrics:
12878
+ - type: accuracy
12879
+ value: 78.52723604572965
12880
+ - type: f1
12881
+ value: 77.1995224144067
12882
+ - type: f1_weighted
12883
+ value: 78.1215987283123
12884
+ - type: main_score
12885
+ value: 78.52723604572965
12886
+ task:
12887
+ type: Classification
12888
  - dataset:
12889
  config: fr
12890
  name: MTEB MintakaRetrieval (fr)
 
13176
  value: 32.064
13177
  task:
13178
  type: Retrieval
13179
+ - dataset:
13180
+ config: fr
13181
+ name: MTEB OpusparcusPC (fr)
13182
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
13183
+ split: test
13184
+ type: GEM/opusparcus
13185
+ metrics:
13186
+ - type: cosine_accuracy
13187
+ value: 82.62942779291554
13188
+ - type: cosine_accuracy_threshold
13189
+ value: 83.4860622882843
13190
+ - type: cosine_ap
13191
+ value: 93.39616519364185
13192
+ - type: cosine_f1
13193
+ value: 88.03378695448146
13194
+ - type: cosine_f1_threshold
13195
+ value: 83.4860622882843
13196
+ - type: cosine_precision
13197
+ value: 83.45195729537367
13198
+ - type: cosine_recall
13199
+ value: 93.14796425024826
13200
+ - type: dot_accuracy
13201
+ value: 82.62942779291554
13202
+ - type: dot_accuracy_threshold
13203
+ value: 83.4860622882843
13204
+ - type: dot_ap
13205
+ value: 93.39616519364185
13206
+ - type: dot_f1
13207
+ value: 88.03378695448146
13208
+ - type: dot_f1_threshold
13209
+ value: 83.4860622882843
13210
+ - type: dot_precision
13211
+ value: 83.45195729537367
13212
+ - type: dot_recall
13213
+ value: 93.14796425024826
13214
+ - type: euclidean_accuracy
13215
+ value: 82.62942779291554
13216
+ - type: euclidean_accuracy_threshold
13217
+ value: 57.4698805809021
13218
+ - type: euclidean_ap
13219
+ value: 93.39616519364185
13220
+ - type: euclidean_f1
13221
+ value: 88.03378695448146
13222
+ - type: euclidean_f1_threshold
13223
+ value: 57.4698805809021
13224
+ - type: euclidean_precision
13225
+ value: 83.45195729537367
13226
+ - type: euclidean_recall
13227
+ value: 93.14796425024826
13228
+ - type: main_score
13229
+ value: 93.39616519364185
13230
+ - type: manhattan_accuracy
13231
+ value: 82.62942779291554
13232
+ - type: manhattan_accuracy_threshold
13233
+ value: 1306.7530632019043
13234
+ - type: manhattan_ap
13235
+ value: 93.34098710518775
13236
+ - type: manhattan_f1
13237
+ value: 87.78409090909089
13238
+ - type: manhattan_f1_threshold
13239
+ value: 1335.2685928344727
13240
+ - type: manhattan_precision
13241
+ value: 83.89140271493213
13242
+ - type: manhattan_recall
13243
+ value: 92.05561072492551
13244
+ - type: max_ap
13245
+ value: 93.39616519364185
13246
+ - type: max_f1
13247
+ value: 88.03378695448146
13248
+ - type: max_precision
13249
+ value: 83.89140271493213
13250
+ - type: max_recall
13251
+ value: 93.14796425024826
13252
+ - type: similarity_accuracy
13253
+ value: 82.62942779291554
13254
+ - type: similarity_accuracy_threshold
13255
+ value: 83.4860622882843
13256
+ - type: similarity_ap
13257
+ value: 93.39616519364185
13258
+ - type: similarity_f1
13259
+ value: 88.03378695448146
13260
+ - type: similarity_f1_threshold
13261
+ value: 83.4860622882843
13262
+ - type: similarity_precision
13263
+ value: 83.45195729537367
13264
+ - type: similarity_recall
13265
+ value: 93.14796425024826
13266
+ task:
13267
+ type: PairClassification
13268
+ - dataset:
13269
+ config: fr
13270
+ name: MTEB PawsXPairClassification (fr)
13271
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
13272
+ split: test
13273
+ type: google-research-datasets/paws-x
13274
+ metrics:
13275
+ - type: cosine_accuracy
13276
+ value: 60.8
13277
+ - type: cosine_accuracy_threshold
13278
+ value: 98.90193939208984
13279
+ - type: cosine_ap
13280
+ value: 60.50913122978733
13281
+ - type: cosine_f1
13282
+ value: 62.69411339833874
13283
+ - type: cosine_f1_threshold
13284
+ value: 95.17210125923157
13285
+ - type: cosine_precision
13286
+ value: 46.51661307609861
13287
+ - type: cosine_recall
13288
+ value: 96.12403100775194
13289
+ - type: dot_accuracy
13290
+ value: 60.8
13291
+ - type: dot_accuracy_threshold
13292
+ value: 98.9019513130188
13293
+ - type: dot_ap
13294
+ value: 60.49770725998639
13295
+ - type: dot_f1
13296
+ value: 62.69411339833874
13297
+ - type: dot_f1_threshold
13298
+ value: 95.17210721969604
13299
+ - type: dot_precision
13300
+ value: 46.51661307609861
13301
+ - type: dot_recall
13302
+ value: 96.12403100775194
13303
+ - type: euclidean_accuracy
13304
+ value: 60.8
13305
+ - type: euclidean_accuracy_threshold
13306
+ value: 14.819307625293732
13307
+ - type: euclidean_ap
13308
+ value: 60.50917425308617
13309
+ - type: euclidean_f1
13310
+ value: 62.69411339833874
13311
+ - type: euclidean_f1_threshold
13312
+ value: 31.07377290725708
13313
+ - type: euclidean_precision
13314
+ value: 46.51661307609861
13315
+ - type: euclidean_recall
13316
+ value: 96.12403100775194
13317
+ - type: main_score
13318
+ value: 60.73371250119265
13319
+ - type: manhattan_accuracy
13320
+ value: 60.9
13321
+ - type: manhattan_accuracy_threshold
13322
+ value: 354.8734188079834
13323
+ - type: manhattan_ap
13324
+ value: 60.73371250119265
13325
+ - type: manhattan_f1
13326
+ value: 62.70506744440393
13327
+ - type: manhattan_f1_threshold
13328
+ value: 711.578369140625
13329
+ - type: manhattan_precision
13330
+ value: 46.73913043478261
13331
+ - type: manhattan_recall
13332
+ value: 95.23809523809523
13333
+ - type: max_ap
13334
+ value: 60.73371250119265
13335
+ - type: max_f1
13336
+ value: 62.70506744440393
13337
+ - type: max_precision
13338
+ value: 46.73913043478261
13339
+ - type: max_recall
13340
+ value: 96.12403100775194
13341
+ - type: similarity_accuracy
13342
+ value: 60.8
13343
+ - type: similarity_accuracy_threshold
13344
+ value: 98.90193939208984
13345
+ - type: similarity_ap
13346
+ value: 60.50913122978733
13347
+ - type: similarity_f1
13348
+ value: 62.69411339833874
13349
+ - type: similarity_f1_threshold
13350
+ value: 95.17210125923157
13351
+ - type: similarity_precision
13352
+ value: 46.51661307609861
13353
+ - type: similarity_recall
13354
+ value: 96.12403100775194
13355
+ task:
13356
+ type: PairClassification
13357
  - dataset:
13358
  config: default
13359
  name: MTEB SICKFr
 
13381
  value: 77.47140335069184
13382
  task:
13383
  type: STS
13384
+ - dataset:
13385
+ config: fr
13386
+ name: MTEB STS22 (fr)
13387
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
13388
+ split: test
13389
+ type: mteb/sts22-crosslingual-sts
13390
+ metrics:
13391
+ - type: cosine_pearson
13392
+ value: 77.1356210910051
13393
+ - type: cosine_spearman
13394
+ value: 81.7065039306575
13395
+ - type: euclidean_pearson
13396
+ value: 79.32575551712296
13397
+ - type: euclidean_spearman
13398
+ value: 81.75624482168821
13399
+ - type: main_score
13400
+ value: 81.7065039306575
13401
+ - type: manhattan_pearson
13402
+ value: 81.05436417153798
13403
+ - type: manhattan_spearman
13404
+ value: 82.13370902176736
13405
+ - type: pearson
13406
+ value: 77.1356210910051
13407
+ - type: spearman
13408
+ value: 81.7065039306575
13409
+ task:
13410
+ type: STS
13411
+ - dataset:
13412
+ config: de-fr
13413
+ name: MTEB STS22 (de-fr)
13414
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
13415
+ split: test
13416
+ type: mteb/sts22-crosslingual-sts
13417
+ metrics:
13418
+ - type: cosine_pearson
13419
+ value: 61.40659325490285
13420
+ - type: cosine_spearman
13421
+ value: 64.21007088135842
13422
+ - type: euclidean_pearson
13423
+ value: 61.051174476106
13424
+ - type: euclidean_spearman
13425
+ value: 64.21007088135842
13426
+ - type: main_score
13427
+ value: 64.21007088135842
13428
+ - type: manhattan_pearson
13429
+ value: 60.225817072214525
13430
+ - type: manhattan_spearman
13431
+ value: 64.32288638294209
13432
+ - type: pearson
13433
+ value: 61.40659325490285
13434
+ - type: spearman
13435
+ value: 64.21007088135842
13436
+ task:
13437
+ type: STS
13438
+ - dataset:
13439
+ config: fr-pl
13440
+ name: MTEB STS22 (fr-pl)
13441
+ revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
13442
+ split: test
13443
+ type: mteb/sts22-crosslingual-sts
13444
+ metrics:
13445
+ - type: cosine_pearson
13446
+ value: 88.17138238483673
13447
+ - type: cosine_spearman
13448
+ value: 84.51542547285167
13449
+ - type: euclidean_pearson
13450
+ value: 87.99782696047525
13451
+ - type: euclidean_spearman
13452
+ value: 84.51542547285167
13453
+ - type: main_score
13454
+ value: 84.51542547285167
13455
+ - type: manhattan_pearson
13456
+ value: 85.811937669563
13457
+ - type: manhattan_spearman
13458
+ value: 84.51542547285167
13459
+ - type: pearson
13460
+ value: 88.17138238483673
13461
+ - type: spearman
13462
+ value: 84.51542547285167
13463
+ task:
13464
+ type: STS
13465
+ - dataset:
13466
+ config: fr
13467
+ name: MTEB STSBenchmarkMultilingualSTS (fr)
13468
+ revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
13469
+ split: test
13470
+ type: mteb/stsb_multi_mt
13471
+ metrics:
13472
+ - type: cosine_pearson
13473
+ value: 79.98375089796882
13474
+ - type: cosine_spearman
13475
+ value: 81.06570417849169
13476
+ - type: euclidean_pearson
13477
+ value: 79.44759787417051
13478
+ - type: euclidean_spearman
13479
+ value: 81.06430479357311
13480
+ - type: main_score
13481
+ value: 81.06570417849169
13482
+ - type: manhattan_pearson
13483
+ value: 79.34683573713086
13484
+ - type: manhattan_spearman
13485
+ value: 81.00584846124926
13486
+ - type: pearson
13487
+ value: 79.98375089796882
13488
+ - type: spearman
13489
+ value: 81.06570417849169
13490
+ task:
13491
+ type: STS
13492
+ - dataset:
13493
+ config: default
13494
+ name: MTEB SummEvalFr
13495
+ revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
13496
+ split: test
13497
+ type: lyon-nlp/summarization-summeval-fr-p2p
13498
+ metrics:
13499
+ - type: cosine_pearson
13500
+ value: 31.198220154029464
13501
+ - type: cosine_spearman
13502
+ value: 30.886000528607877
13503
+ - type: dot_pearson
13504
+ value: 31.19822718500702
13505
+ - type: dot_spearman
13506
+ value: 30.86590068433314
13507
+ - type: main_score
13508
+ value: 30.886000528607877
13509
+ - type: pearson
13510
+ value: 31.198220154029464
13511
+ - type: spearman
13512
+ value: 30.886000528607877
13513
+ task:
13514
+ type: Summarization
13515
+ - dataset:
13516
+ config: default
13517
+ name: MTEB SyntecReranking
13518
+ revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad
13519
+ split: test
13520
+ type: lyon-nlp/mteb-fr-reranking-syntec-s2p
13521
+ metrics:
13522
+ - type: main_score
13523
+ value: 86.6
13524
+ - type: map
13525
+ value: 86.6
13526
+ - type: mrr
13527
+ value: 86.6
13528
+ - type: nAUC_map_diff1
13529
+ value: 59.66160008216082
13530
+ - type: nAUC_map_max
13531
+ value: 19.768885092568734
13532
+ - type: nAUC_map_std
13533
+ value: 44.66975354255961
13534
+ - type: nAUC_mrr_diff1
13535
+ value: 59.66160008216082
13536
+ - type: nAUC_mrr_max
13537
+ value: 19.768885092568734
13538
+ - type: nAUC_mrr_std
13539
+ value: 44.66975354255961
13540
+ task:
13541
+ type: Reranking
13542
  - dataset:
13543
  config: default
13544
  name: MTEB SyntecRetrieval