Habana
regisss HF staff commited on
Commit
36f8066
1 Parent(s): 71a77f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -3
README.md CHANGED
@@ -1,3 +1,59 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ [Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU).
6
+ It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks.
7
+ Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana).
8
+
9
+ ## Llama model HPU configuration
10
+
11
+ This model only contains the `GaudiConfig` file for running [Llama models](https://huggingface.co/meta-llama) on Habana's Gaudi processors (HPU).
12
+
13
+ **This model contains no model weights, only a GaudiConfig.**
14
+
15
+ This enables to specify:
16
+ - `use_fused_adam`: whether to use Habana's custom AdamW implementation
17
+ - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator
18
+ - `use_torch_autocast`: whether to use PyTorch's autocast mixed precision
19
+
20
+ ## Usage
21
+
22
+ The model is instantiated the same way as in the Transformers library.
23
+ The only difference is that there are a few new training arguments specific to HPUs.
24
+
25
+ [Here](https://github.com/huggingface/optimum-habana/blob/main/examples/language-modeling/run_clm.py) is a causal language modeling example script to pre-train/fine-tune a model. You can run it with Llama with the following command:
26
+ ```bash
27
+ python3 run_lora_clm.py \
28
+ --model_name_or_path huggyllama/llama-7b \
29
+ --dataset_name tatsu-lab/alpaca \
30
+ --bf16 True \
31
+ --output_dir ./model_lora_llama \
32
+ --num_train_epochs 3 \
33
+ --per_device_train_batch_size 16 \
34
+ --evaluation_strategy "no" \
35
+ --save_strategy "no" \
36
+ --learning_rate 1e-4 \
37
+ --warmup_ratio 0.03 \
38
+ --lr_scheduler_type "constant" \
39
+ --max_grad_norm 0.3 \
40
+ --logging_steps 1 \
41
+ --do_train \
42
+ --do_eval \
43
+ --use_habana \
44
+ --use_lazy_mode \
45
+ --throughput_warmup_steps 3 \
46
+ --lora_rank=8 \
47
+ --lora_alpha=16 \
48
+ --lora_dropout=0.05 \
49
+ --lora_target_modules "q_proj" "v_proj" \
50
+ --dataset_concatenation \
51
+ --max_seq_length 512 \
52
+ --low_cpu_mem_usage True \
53
+ --validation_split_percentage 4 \
54
+ --adam_epsilon 1e-08
55
+ ```
56
+
57
+ You will need to install the [PEFT](https://huggingface.co/docs/peft/index) library with `pip install peft` to run the command above.
58
+
59
+ Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples.