Upload modeling_mists.py
Browse files- modeling_mists.py +405 -0
modeling_mists.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from transformers import PreTrainedModel
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers import Cache
|
11 |
+
from transformers.modeling_outputs import ModelOutput
|
12 |
+
from transformers.utils import (
|
13 |
+
add_start_docstrings,
|
14 |
+
add_start_docstrings_to_model_forward,
|
15 |
+
logging,
|
16 |
+
replace_return_docstrings,
|
17 |
+
)
|
18 |
+
from transformers import AutoModel, AutoModelForCausalLM
|
19 |
+
|
20 |
+
from .modeling_moment import MomentEmbeddingModel
|
21 |
+
from .configuration_mists import MistsConfig
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Mists
|
26 |
+
class MistsCausalLMOutputWithPast(ModelOutput):
|
27 |
+
loss: Optional[torch.FloatTensor] = None
|
28 |
+
logits: torch.FloatTensor = None
|
29 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
30 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
31 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
32 |
+
time_series_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
33 |
+
|
34 |
+
|
35 |
+
class MistsMultiModalProjector(nn.Module):
|
36 |
+
def __init__(self, config: MistsConfig):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
# time series towerからのoutputは定型でない。input_maskに合わせてpadding用の学習可能なベクトルを使用し、time series towerからの入力を定型にする。
|
40 |
+
self.mask_embedding = nn.Parameter(torch.randn(1, 1, config.time_series_hidden_size))
|
41 |
+
|
42 |
+
# mlp
|
43 |
+
self.linear_1 = nn.Linear(config.time_series_hidden_size, config.text_config.hidden_size, bias=True)
|
44 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
45 |
+
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
46 |
+
|
47 |
+
def forward(self, time_series_features, input_mask):
|
48 |
+
masked_features = time_series_features * input_mask.unsqueeze(-1) + self.mask_embedding * (1 - input_mask.unsqueeze(-1))
|
49 |
+
hidden_states = self.linear_1(masked_features)
|
50 |
+
hidden_states = self.act(hidden_states)
|
51 |
+
hidden_states = self.linear_2(hidden_states)
|
52 |
+
return hidden_states
|
53 |
+
|
54 |
+
|
55 |
+
class MistsPreTrainedModel(PreTrainedModel):
|
56 |
+
config_class = MistsConfig
|
57 |
+
base_model_prefix = "model"
|
58 |
+
supports_gradient_checkpointing = True
|
59 |
+
_no_split_modules = ["T5Block"]
|
60 |
+
_skip_keys_device_placement = "past_key_values"
|
61 |
+
_supports_flash_attn_2 = True
|
62 |
+
_supports_sdpa = True
|
63 |
+
_supports_cache_class = True
|
64 |
+
_supports_static_cache = True
|
65 |
+
|
66 |
+
def _init_weights(self, module):
|
67 |
+
# important: 現状Mistralの初期化コードをそのまま移植している。
|
68 |
+
# refers: https://github.com/huggingface/transformers/blob/25245ec26dc29bcf6102e1b4ddd0dfd02e720cf5/src/transformers/models/mistral/modeling_mistral.py#L762
|
69 |
+
# 現状のまま事前学習を行うのは望ましくなく、FineTuningと推論のみが可能。
|
70 |
+
std = self.config.text_config.initializer_range
|
71 |
+
if isinstance(module, nn.Linear):
|
72 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
73 |
+
if module.bias is not None:
|
74 |
+
module.bias.data.zero_()
|
75 |
+
elif isinstance(module, nn.Embedding):
|
76 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
77 |
+
if module.padding_idx is not None:
|
78 |
+
module.weight.data[module.padding_idx].zero_()
|
79 |
+
|
80 |
+
|
81 |
+
class MistsForConditionalGeneration(MistsPreTrainedModel):
|
82 |
+
def __init__(self, config: MistsConfig):
|
83 |
+
super().__init__(config)
|
84 |
+
|
85 |
+
self.time_series_tower = MomentEmbeddingModel(config.time_series_config)
|
86 |
+
self.multi_modal_projector = MistsMultiModalProjector(config)
|
87 |
+
self.vocab_size = config.text_config.vocab_size
|
88 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
89 |
+
config.text_config, attn_implementation=config._attn_implementation
|
90 |
+
)
|
91 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
92 |
+
self.post_init()
|
93 |
+
|
94 |
+
def get_time_series_tower(self):
|
95 |
+
time_series_tower = getattr(self, 'time_series_tower', None)
|
96 |
+
if type(time_series_tower) is list:
|
97 |
+
time_series_tower = time_series_tower[0]
|
98 |
+
return time_series_tower
|
99 |
+
|
100 |
+
def get_input_embeddings(self):
|
101 |
+
return self.language_model.get_input_embeddings()
|
102 |
+
|
103 |
+
def set_input_embeddings(self, value):
|
104 |
+
self.language_model.set_input_embeddings(value)
|
105 |
+
|
106 |
+
def get_output_embeddings(self):
|
107 |
+
return self.language_model.get_output_embeddings()
|
108 |
+
|
109 |
+
def set_output_embeddings(self, new_embeddings):
|
110 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
111 |
+
|
112 |
+
def set_decoder(self, decoder):
|
113 |
+
self.language_model.set_decoder(decoder)
|
114 |
+
|
115 |
+
def get_decoder(self):
|
116 |
+
return self.language_model.get_decoder()
|
117 |
+
|
118 |
+
def tie_weights(self):
|
119 |
+
return self.language_model.tie_weights()
|
120 |
+
|
121 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
122 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
123 |
+
# update vocab size
|
124 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
125 |
+
self.vocab_size = model_embeds.num_embeddings
|
126 |
+
return model_embeds
|
127 |
+
|
128 |
+
# copy _merge_input_ids_with_image_features from LlabaForConditionalGeneration
|
129 |
+
# refers: https://github.com/huggingface/transformers/blob/25245ec26dc29bcf6102e1b4ddd0dfd02e720cf5/src/transformers/models/llava/modeling_llava.py#L277C9-L277C45
|
130 |
+
def _merge_input_ids_with_time_series_features(self, time_series_features, inputs_embeds, input_ids, attention_mask, labels):
|
131 |
+
num_time_series, num_time_series_patches, embed_dim = time_series_features.shape # num_time_series_patches = n_channels x n_patches
|
132 |
+
batch_size, sequence_length = input_ids.shape
|
133 |
+
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
134 |
+
# 1. Create a mask to know where special time_series tokens are
|
135 |
+
special_time_series_token_mask = input_ids == self.config.time_series_token_index
|
136 |
+
num_special_time_series_tokens = torch.sum(special_time_series_token_mask, dim=-1)
|
137 |
+
# Compute the maximum embed dimension
|
138 |
+
max_embed_dim = (num_special_time_series_tokens.max() * (num_time_series_patches - 1)) + sequence_length
|
139 |
+
max_embed_dim = int(max_embed_dim.item()) # テンソルから整数値を取得
|
140 |
+
if max_embed_dim is None:
|
141 |
+
print(f"num_special_time_series_tokens.max(): {num_special_time_series_tokens.max()}")
|
142 |
+
print(f"num_time_series_patches: {num_time_series_patches}")
|
143 |
+
print(f"sequence_length: {sequence_length}")
|
144 |
+
else:
|
145 |
+
print(f"max_embed_dim 0: {max_embed_dim}")
|
146 |
+
batch_indices, non_time_series_indices = torch.where(input_ids != self.config.time_series_token_index)
|
147 |
+
|
148 |
+
# 2. Compute the positions where text should be written
|
149 |
+
# Calculate new positions for text tokens in merged time_series-text sequence.
|
150 |
+
# `special_time_series_token_mask` identifies time_series tokens. Each time_series token will be replaced by `nb_text_tokens_per_time_series - 1` text tokens.
|
151 |
+
# `torch.cumsum` computes how each time_series token shifts subsequent text token positions.
|
152 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
153 |
+
new_token_positions = torch.cumsum((special_time_series_token_mask * (num_time_series_patches - 1) + 1), -1) - 1
|
154 |
+
nb_time_series_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
155 |
+
if left_padding:
|
156 |
+
new_token_positions += nb_time_series_pad[:, None] # offset for left padding
|
157 |
+
text_to_overwrite = new_token_positions[batch_indices, non_time_series_indices]
|
158 |
+
|
159 |
+
# 3. Create the full embedding, already padded to the maximum position
|
160 |
+
final_embedding = torch.zeros(
|
161 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
162 |
+
)
|
163 |
+
final_attention_mask = torch.zeros(
|
164 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
165 |
+
)
|
166 |
+
if labels is not None:
|
167 |
+
final_labels = torch.full(
|
168 |
+
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
169 |
+
)
|
170 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
171 |
+
# set the corresponding tensors into their correct target device.
|
172 |
+
target_device = inputs_embeds.device
|
173 |
+
batch_indices, non_time_series_indices, text_to_overwrite = (
|
174 |
+
batch_indices.to(target_device),
|
175 |
+
non_time_series_indices.to(target_device),
|
176 |
+
text_to_overwrite.to(target_device),
|
177 |
+
)
|
178 |
+
attention_mask = attention_mask.to(target_device)
|
179 |
+
|
180 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<time_series>", "how", "are"]
|
181 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the time_series features
|
182 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_time_series_indices]
|
183 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_time_series_indices]
|
184 |
+
print("max_embed_dim is None: ", (max_embed_dim is None))
|
185 |
+
print("max_embed_dim: ", max_embed_dim)
|
186 |
+
if labels is not None:
|
187 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_time_series_indices]
|
188 |
+
print("max_embed_dim is None: ", (max_embed_dim is None))
|
189 |
+
print("max_embed_dim: ", max_embed_dim)
|
190 |
+
|
191 |
+
# 5. Fill the embeddings corresponding to the time_series. Anything that is not `text_positions` needs filling (#29835)
|
192 |
+
print("inputs_embeds.device: ", inputs_embeds.device)
|
193 |
+
print("max_embed_dim: ", max_embed_dim, " is None: ", (max_embed_dim is None))
|
194 |
+
time_series_to_overwrite = torch.full(
|
195 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
196 |
+
)
|
197 |
+
time_series_to_overwrite[batch_indices, text_to_overwrite] = False
|
198 |
+
time_series_to_overwrite &= time_series_to_overwrite.cumsum(-1) - 1 >= nb_time_series_pad[:, None].to(target_device)
|
199 |
+
|
200 |
+
if time_series_to_overwrite.sum() != time_series_features.shape[:-1].numel():
|
201 |
+
raise ValueError(
|
202 |
+
f"The input provided to the model are wrong. The number of time series tokens is {torch.sum(special_time_series_token_mask)} while"
|
203 |
+
f" the number of time series given to the model is {num_time_series}. This prevents correct indexing and breaks batch generation."
|
204 |
+
)
|
205 |
+
|
206 |
+
final_embedding[time_series_to_overwrite] = time_series_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
207 |
+
final_attention_mask |= time_series_to_overwrite
|
208 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
209 |
+
|
210 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
211 |
+
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
|
212 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
213 |
+
|
214 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
215 |
+
|
216 |
+
if labels is None:
|
217 |
+
final_labels = None
|
218 |
+
|
219 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
220 |
+
|
221 |
+
def forward(
|
222 |
+
self,
|
223 |
+
input_ids: torch.LongTensor = None,
|
224 |
+
time_series_values: torch.FloatTensor = None,
|
225 |
+
time_series_input_mask: torch.FloatTensor = None,
|
226 |
+
attention_mask: Optional[torch.Tensor] = None,
|
227 |
+
position_ids: Optional[torch.LongTensor] = None,
|
228 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
229 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
230 |
+
# time_series_feature_layer: Optional[int] = None,
|
231 |
+
# time_series_feature_select_strategy: Optional[str] = None,
|
232 |
+
labels: Optional[torch.LongTensor] = None,
|
233 |
+
use_cache: Optional[bool] = None,
|
234 |
+
output_attentions: Optional[bool] = None,
|
235 |
+
output_hidden_states: Optional[bool] = None,
|
236 |
+
return_dict: Optional[bool] = None,
|
237 |
+
) -> Union[Tuple, MistsCausalLMOutputWithPast]:
|
238 |
+
|
239 |
+
# language_modelの引数で変わる
|
240 |
+
# output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
241 |
+
# output_hidden_states = (
|
242 |
+
# output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
243 |
+
# )
|
244 |
+
# return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
245 |
+
# vision_feature_layer = (
|
246 |
+
# vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
247 |
+
# )
|
248 |
+
# vision_feature_select_strategy = (
|
249 |
+
# vision_feature_select_strategy
|
250 |
+
# if vision_feature_select_strategy is not None
|
251 |
+
# else self.config.vision_feature_select_strategy
|
252 |
+
# )
|
253 |
+
|
254 |
+
if inputs_embeds is None:
|
255 |
+
# 1. Extra the input embeddings
|
256 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
257 |
+
|
258 |
+
# 2. Merge text and time_series
|
259 |
+
if time_series_values is not None and input_ids.shape[1] != 1:
|
260 |
+
time_series_outputs = self.time_series_tower(time_series_values, time_series_input_mask)
|
261 |
+
time_series_features = self.multi_modal_projector(
|
262 |
+
time_series_features=time_series_outputs.hidden_states, # [batch_size, n_patches, d_model]
|
263 |
+
input_mask=time_series_outputs.input_mask_patch_view, # [batch_size, n_paches]
|
264 |
+
)
|
265 |
+
|
266 |
+
inputs_embeds = inputs_embeds.to(time_series_features.dtype)
|
267 |
+
inputs_embeds, attention_mask, labels, position_ids =self._merge_input_ids_with_time_series_features(
|
268 |
+
time_series_features, inputs_embeds, input_ids, attention_mask, labels
|
269 |
+
)
|
270 |
+
|
271 |
+
# In case input_ids.shape[1] == 1 & time_series_values==None & past_key_values != None, we are in the case of
|
272 |
+
# generation with cache
|
273 |
+
elif past_key_values is not None and time_series_values is not None and input_ids.shape[1] == 1:
|
274 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
275 |
+
# that are set to 0
|
276 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
277 |
+
|
278 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
279 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
280 |
+
|
281 |
+
# Get the target length
|
282 |
+
target_length = input_ids.shape[1]
|
283 |
+
past_length = first_layer_past_key_value.shape[-1]
|
284 |
+
|
285 |
+
extended_attention_mask = torch.ones(
|
286 |
+
(attention_mask.shape[0], past_length),
|
287 |
+
dtype=attention_mask.dtype,
|
288 |
+
device=attention_mask.device,
|
289 |
+
)
|
290 |
+
|
291 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
292 |
+
# if one uses Llava + Fused modules where the cache on the
|
293 |
+
# first iteration is already big enough, or if one passes custom cache
|
294 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
295 |
+
new_batch_index = batch_index[valid_indices]
|
296 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
297 |
+
|
298 |
+
# Zero-out the places where we don't need to attend
|
299 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
300 |
+
|
301 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
302 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
303 |
+
|
304 |
+
print("inputs_embeds: ", inputs_embeds.shape)
|
305 |
+
|
306 |
+
outputs = self.language_model(
|
307 |
+
attention_mask=attention_mask,
|
308 |
+
position_ids=position_ids,
|
309 |
+
past_key_values=past_key_values,
|
310 |
+
inputs_embeds=inputs_embeds.to(self.language_model.dtype),
|
311 |
+
use_cache=use_cache,
|
312 |
+
output_attentions=output_attentions,
|
313 |
+
output_hidden_states=output_hidden_states,
|
314 |
+
return_dict=return_dict,
|
315 |
+
)
|
316 |
+
|
317 |
+
logits = outputs[0]
|
318 |
+
|
319 |
+
loss = None
|
320 |
+
if labels is not None:
|
321 |
+
# Shift so that tokens < n predict n
|
322 |
+
if attention_mask is not None:
|
323 |
+
shift_attention_mask = attention_mask[..., 1:]
|
324 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
325 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
326 |
+
else:
|
327 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
328 |
+
shift_labels = labels[..., 1:].contiguous()
|
329 |
+
# Flatten the tokens
|
330 |
+
loss_fct = nn.CrossEntropyLoss()
|
331 |
+
loss = loss_fct(
|
332 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
333 |
+
)
|
334 |
+
|
335 |
+
if not return_dict:
|
336 |
+
output = (logits,) + outputs[1:]
|
337 |
+
return (loss,) + output if loss is not None else output
|
338 |
+
|
339 |
+
return MistsCausalLMOutputWithPast(
|
340 |
+
loss=loss,
|
341 |
+
logits=logits,
|
342 |
+
past_key_values=outputs.past_key_values,
|
343 |
+
hidden_states=outputs.hidden_states,
|
344 |
+
attentions=outputs.attentions,
|
345 |
+
)
|
346 |
+
|
347 |
+
def prepare_inputs_for_generation(
|
348 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, time_series_values=None, attention_mask=None, **kwargs
|
349 |
+
):
|
350 |
+
if past_key_values is not None:
|
351 |
+
if isinstance(past_key_values, Cache):
|
352 |
+
cache_length = past_key_values.get_seq_length()
|
353 |
+
past_length = past_key_values.seen_tokens
|
354 |
+
else:
|
355 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
356 |
+
|
357 |
+
# Keep only the unprocessed tokens:
|
358 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
359 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
360 |
+
# input)
|
361 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
362 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
363 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
364 |
+
# input_ids based on the past_length.
|
365 |
+
elif past_length < input_ids.shape[1]:
|
366 |
+
input_ids = input_ids[:, past_length:]
|
367 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
368 |
+
elif self.config.time_series_token_index in input_ids:
|
369 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
370 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
371 |
+
# older attention values, as their corresponding values are not part of the input.
|
372 |
+
if cache_length < past_length and attention_mask is not None:
|
373 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
374 |
+
|
375 |
+
position_ids = kwargs.get("position_ids", None)
|
376 |
+
if attention_mask is not None and position_ids is None:
|
377 |
+
# create position_ids on the fly for batch generation
|
378 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
379 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
380 |
+
if past_key_values:
|
381 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
382 |
+
|
383 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
384 |
+
if inputs_embeds is not None and past_key_values is None:
|
385 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
386 |
+
else:
|
387 |
+
model_inputs = {"input_ids": input_ids}
|
388 |
+
|
389 |
+
model_inputs.update(
|
390 |
+
{
|
391 |
+
"position_ids": position_ids,
|
392 |
+
"past_key_values": past_key_values,
|
393 |
+
"use_cache": kwargs.get("use_cache"),
|
394 |
+
"attention_mask": attention_mask,
|
395 |
+
"time_series_values": time_series_values,
|
396 |
+
}
|
397 |
+
)
|
398 |
+
return model_inputs
|
399 |
+
|
400 |
+
def _reorder_cache(self, *args, **kwargs):
|
401 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|