Update README.md
Browse files
README.md
CHANGED
@@ -13,4 +13,44 @@ Mists(**Mis**tral **T**ime **S**eries) model is a multimodal model that combines
|
|
13 |
This model is based on the following models:
|
14 |
- [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)
|
15 |
- [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large)
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
This model is based on the following models:
|
14 |
- [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)
|
15 |
- [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large)
|
16 |
+
|
17 |
+
This model is experimental.
|
18 |
+
This model still has some flaws and cannot be used.
|
19 |
+
|
20 |
+
## How to load model
|
21 |
+
|
22 |
+
```Python
|
23 |
+
!pip install git+https://github.com/Hajime-Y/moment.git
|
24 |
+
!pip install -U transformers
|
25 |
+
!git clone https://github.com/Hajime-Y/Mists.git
|
26 |
+
```
|
27 |
+
|
28 |
+
```Python
|
29 |
+
import torch
|
30 |
+
|
31 |
+
from Mists.configuration_mists import MistsConfig
|
32 |
+
from Mists.modeling_mists import MistsForConditionalGeneration
|
33 |
+
from Mists.processing_mists import MistsProcessor
|
34 |
+
|
35 |
+
model_id = "HachiML/Mists-7B-v0.1-not-trained"
|
36 |
+
model = MistsForConditionalGeneration.from_pretrained(
|
37 |
+
model_id,
|
38 |
+
torch_dtype=torch.bfloat16,
|
39 |
+
low_cpu_mem_usage=True,
|
40 |
+
).to("cuda")
|
41 |
+
processor = MistsProcessor.from_pretrained(model_id)
|
42 |
+
```
|
43 |
+
|
44 |
+
```Python
|
45 |
+
import pandas as pd
|
46 |
+
|
47 |
+
hist_ndaq_512 = pd.DataFrame("nasdaq_price_history.csv")
|
48 |
+
time_series_data = torch.tensor(hist_ndaq_512[["Open", "High", "Low", "Close", "Volume"]].values, dtype=torch.float)
|
49 |
+
time_series_data = time_series_data.t().unsqueeze(0)
|
50 |
+
|
51 |
+
prompt = "USER: <time_series>\nWhat are the features of this data?\nASSISTANT:"
|
52 |
+
inputs = processor(prompt, time_series_data, return_tensors='pt').to(torch.float32)
|
53 |
+
|
54 |
+
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
55 |
+
print(processor.decode(output[0], skip_special_tokens=True))
|
56 |
+
```
|