HachiML commited on
Commit
3c3cbb5
β€’
1 Parent(s): 4e3c89f

Upload modeling_mists.py

Browse files
Files changed (1) hide show
  1. modeling_mists.py +0 -19
modeling_mists.py CHANGED
@@ -137,12 +137,6 @@ class MistsForConditionalGeneration(MistsPreTrainedModel):
137
  # Compute the maximum embed dimension
138
  max_embed_dim = (num_special_time_series_tokens.max() * (num_time_series_patches - 1)) + sequence_length
139
  max_embed_dim = int(max_embed_dim.item()) # テンソルから整数倀を取得
140
- if max_embed_dim is None:
141
- print(f"num_special_time_series_tokens.max(): {num_special_time_series_tokens.max()}")
142
- print(f"num_time_series_patches: {num_time_series_patches}")
143
- print(f"sequence_length: {sequence_length}")
144
- else:
145
- print(f"max_embed_dim 0: {max_embed_dim}")
146
  batch_indices, non_time_series_indices = torch.where(input_ids != self.config.time_series_token_index)
147
 
148
  # 2. Compute the positions where text should be written
@@ -181,16 +175,10 @@ class MistsForConditionalGeneration(MistsPreTrainedModel):
181
  # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the time_series features
182
  final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_time_series_indices]
183
  final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_time_series_indices]
184
- print("max_embed_dim is None: ", (max_embed_dim is None))
185
- print("max_embed_dim: ", max_embed_dim)
186
  if labels is not None:
187
  final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_time_series_indices]
188
- print("max_embed_dim is None: ", (max_embed_dim is None))
189
- print("max_embed_dim: ", max_embed_dim)
190
 
191
  # 5. Fill the embeddings corresponding to the time_series. Anything that is not `text_positions` needs filling (#29835)
192
- print("inputs_embeds.device: ", inputs_embeds.device)
193
- print("max_embed_dim: ", max_embed_dim, " is None: ", (max_embed_dim is None))
194
  time_series_to_overwrite = torch.full(
195
  (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
196
  )
@@ -251,14 +239,9 @@ class MistsForConditionalGeneration(MistsPreTrainedModel):
251
  # else self.config.vision_feature_select_strategy
252
  # )
253
 
254
- print("========")
255
- print("input_ids: ", input_ids.shape)
256
- print("time_series_values: ", time_series_values.shape)
257
-
258
  if inputs_embeds is None:
259
  # 1. Extra the input embeddings
260
  inputs_embeds = self.get_input_embeddings()(input_ids)
261
- print("inputs_embeds: ", inputs_embeds.shape)
262
 
263
  # 2. Merge text and time_series
264
  if time_series_values is not None and input_ids.shape[1] != 1:
@@ -305,8 +288,6 @@ class MistsForConditionalGeneration(MistsPreTrainedModel):
305
 
306
  attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
307
  position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
308
-
309
- print("inputs_embeds: ", inputs_embeds.shape)
310
 
311
  outputs = self.language_model(
312
  attention_mask=attention_mask,
 
137
  # Compute the maximum embed dimension
138
  max_embed_dim = (num_special_time_series_tokens.max() * (num_time_series_patches - 1)) + sequence_length
139
  max_embed_dim = int(max_embed_dim.item()) # テンソルから整数倀を取得
 
 
 
 
 
 
140
  batch_indices, non_time_series_indices = torch.where(input_ids != self.config.time_series_token_index)
141
 
142
  # 2. Compute the positions where text should be written
 
175
  # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the time_series features
176
  final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_time_series_indices]
177
  final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_time_series_indices]
 
 
178
  if labels is not None:
179
  final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_time_series_indices]
 
 
180
 
181
  # 5. Fill the embeddings corresponding to the time_series. Anything that is not `text_positions` needs filling (#29835)
 
 
182
  time_series_to_overwrite = torch.full(
183
  (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
184
  )
 
239
  # else self.config.vision_feature_select_strategy
240
  # )
241
 
 
 
 
 
242
  if inputs_embeds is None:
243
  # 1. Extra the input embeddings
244
  inputs_embeds = self.get_input_embeddings()(input_ids)
 
245
 
246
  # 2. Merge text and time_series
247
  if time_series_values is not None and input_ids.shape[1] != 1:
 
288
 
289
  attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
290
  position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
 
 
291
 
292
  outputs = self.language_model(
293
  attention_mask=attention_mask,