myBit-Llama2-jp-127M-test-23 / modeling_bit_llama.py
HachiML's picture
End of training
d123ff3 verified
import warnings
from typing import Optional, Tuple
from transformers.models.llama.modeling_llama import (
LlamaConfig,
LlamaModel,
LlamaForCausalLM,
LlamaAttention,
LlamaFlashAttention2,
LlamaSdpaAttention,
LlamaMLP,
LlamaDecoderLayer,
)
from mybitnet.bitnet import BitLinear, BitLinear158b
import torch
from torch import nn
class BitLlamaConfig(LlamaConfig):
model_type = "bit_llama"
def __init__(self, bitnet_type="1.58b", bits=8, **kwargs):
super().__init__(**kwargs)
self.bitnet_type = bitnet_type
if self.bitnet_type not in ["1.58b", "1b"]:
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
self.bits = bits
class BitLlamaMLP(LlamaMLP):
def __init__(self, config):
super().__init__(config)
if config.bitnet_type=="1b":
self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=False)
self.up_proj = BitLinear(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
elif config.bitnet_type=="1.58b":
self.gate_proj = BitLinear158b(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=False)
self.up_proj = BitLinear158b(self.hidden_size, self.intermediate_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.down_proj = BitLinear158b(self.intermediate_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
else:
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
class BitLlamaAttention(LlamaAttention):
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
super().__init__(config)
if config.bitnet_type=="1b":
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
elif config.bitnet_type=="1.58b":
self.q_proj = BitLinear158b(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.k_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.v_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.o_proj = BitLinear158b(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
else:
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
class BitLlamaFlashAttention2(LlamaFlashAttention2):
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
if config.bitnet_type=="1b":
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
elif config.bitnet_type=="1.58b":
self.q_proj = BitLinear158b(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.k_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.v_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.o_proj = BitLinear158b(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
else:
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
class BitLlamaSdpaAttention(LlamaSdpaAttention):
def __init__(self, config: BitLlamaConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
if config.bitnet_type=="1b":
self.q_proj = BitLinear(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.k_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.v_proj = BitLinear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.o_proj = BitLinear(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
elif config.bitnet_type=="1.58b":
self.q_proj = BitLinear158b(self.hidden_size, self.num_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.k_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.v_proj = BitLinear158b(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
self.o_proj = BitLinear158b(self.hidden_size, self.hidden_size, bias=False, rms_norm_eps=config.rms_norm_eps, bits=config.bits, flg_before_linear=True)
else:
raise ValueError("bitnet_type must be either '1.58b' or '1b'.")
BITLLAMA_ATTENTION_CLASSES = {
"eager": BitLlamaAttention,
"flash_attention_2": BitLlamaFlashAttention2,
"sdpa": BitLlamaSdpaAttention,
}
class BitLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: BitLlamaConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = BITLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = BitLlamaMLP(config)
del self.input_layernorm
del self.post_attention_layernorm
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
refers: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L693
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class BitLlamaModel(LlamaModel):
config_class = BitLlamaConfig
def __init__(self, config: BitLlamaConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[BitLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
class BitLlamaForCausalLM(LlamaForCausalLM):
config_class = BitLlamaConfig
def __init__(self, config: BitLlamaConfig):
super().__init__(config)
self.model = BitLlamaModel(config)
self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False, bits=config.bits, flg_before_linear=True)