--- library_name: peft base_model: Qwen/Qwen2-1.5B-Instruct pipeline_tag: text-generation license: apache-2.0 --- # Model Card for Model ID ## Model Details ### Model Description - **Developed by: hack337** - **Model type: qwen2** - **Finetuned from model: Qwen/Qwen2-1.5B-Instruct** ### Model Sources [optional] - **Repository: https://huggingface.co/Hack337/WavGPT-1.0** - **Demo: https://huggingface.co/spaces/Hack337/WavGPT** ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel device = "cuda" # the device to load the model onto model_path = "Hack337/WavGPT-1.0" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-1.5B-Instruct", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct") model = PeftModel.from_pretrained(model, model_path) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "Вы очень полезный помощник."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` - PEFT 0.11.1