Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Haleshot/Mathmate-7B-DELLA-ORPO
|
3 |
+
tags:
|
4 |
+
- finetuned
|
5 |
+
- orpo
|
6 |
+
- everyday-conversations
|
7 |
+
datasets:
|
8 |
+
- HuggingFaceTB/everyday-conversations-llama3.1-2k
|
9 |
+
license: apache-2.0
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
library_name: transformers
|
13 |
+
pipeline_tag: text-generation
|
14 |
+
---
|
15 |
+
|
16 |
+
# Mathmate-7B-DELLA-ORPO-D
|
17 |
+
|
18 |
+
Mathmate-7B-DELLA-ORPO-D is a finetuned version of [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO) using the ORPO method, combined with a LoRA adapter trained on everyday conversations.
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
- **Base Model:** [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO)
|
23 |
+
- **Training Dataset:** [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k)
|
24 |
+
|
25 |
+
## Dataset
|
26 |
+
|
27 |
+
The model incorporates training on the [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) dataset, which focuses on everyday conversations and small talk.
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
Here's an example of how to use the model:
|
32 |
+
|
33 |
+
```python
|
34 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
35 |
+
import torch
|
36 |
+
|
37 |
+
model_name = "Haleshot/Mathmate-7B-DELLA-ORPO-ORPO-D"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
40 |
+
|
41 |
+
def generate_response(prompt, max_length=512):
|
42 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
43 |
+
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
|
44 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
+
|
46 |
+
prompt = "Let's have a casual conversation about weekend plans."
|
47 |
+
response = generate_response(prompt)
|
48 |
+
print(response)
|
49 |
+
```
|
50 |
+
|
51 |
+
## Acknowledgements
|
52 |
+
|
53 |
+
Thanks to the HuggingFaceTB team for providing the everyday conversations dataset used in this finetuning process.
|