--- base_model: Haleshot/Mathmate-7B-DELLA-ORPO tags: - finetuned - orpo - everyday-conversations datasets: - HuggingFaceTB/everyday-conversations-llama3.1-2k license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation --- # Mathmate-7B-DELLA-ORPO-D Mathmate-7B-DELLA-ORPO-D is a finetuned version of [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO) using the ORPO method, combined with a LoRA adapter trained on everyday conversations. ## Model Details - **Base Model:** [Haleshot/Mathmate-7B-DELLA-ORPO](https://huggingface.co/Haleshot/Mathmate-7B-DELLA-ORPO) - **Training Dataset:** [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) ## Dataset The model incorporates training on the [HuggingFaceTB/everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) dataset, which focuses on everyday conversations and small talk. ## Usage Here's an example of how to use the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_name = "Haleshot/Mathmate-7B-DELLA-ORPO-ORPO-D" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") def generate_response(prompt, max_length=512): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7) return tokenizer.decode(outputs[0], skip_special_tokens=True) prompt = "Let's have a casual conversation about weekend plans." response = generate_response(prompt) print(response) ``` ## Acknowledgements Thanks to the HuggingFaceTB team for providing the everyday conversations dataset used in this finetuning process.