File size: 1,592 Bytes
e09c862
 
 
 
 
 
 
 
 
 
 
 
 
d323de9
 
e5040c4
d323de9
e5040c4
e09c862
 
e5040c4
d323de9
 
 
e09c862
 
 
 
 
 
 
 
 
 
1928a7a
 
 
 
e09c862
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
instance_prompt: r3dcma

widget:
  - text: "r3dcma, 35mm movie still; A colossal waterfall cascades from towering cliffs into a misty abyss below. At the edge of the precipice, a warrior meditates, harnessing the raw energy of nature, as the roar of the water drowns out all other sounds.; in the style of r3dcma"
    output:
      url: "https://cdn-uploads.huggingface.co/production/uploads/66bde22dd9a797412206b774/SF3gufcU46Aegmna7KKcI.png"
---


<Gallery/>


# Red Cinema

Trained on Replicate using:

https://replicate.com/ostris/flux-dev-lora-trainer/train


## Trigger words
You should use `r3dcma` to trigger the image generation.

## Prompt Structure

`r3dcma`, [Prompt],`in the style of r3dcma`


## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('HalimAlrasihi/red-cinema', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)