--- base_model: google/mt5-small tags: - generated_from_trainer datasets: - govreport-summarization metrics: - rouge model-index: - name: mt5-small-finetuned-govreport-summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: govreport-summarization type: govreport-summarization config: document split: train args: document metrics: - name: Rouge1 type: rouge value: 5.4727 --- # mt5-small-finetuned-govreport-summarization This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the govreport-summarization dataset. It achieves the following results on the evaluation set: - Loss: 2.9193 - Rouge1: 5.4727 - Rouge2: 1.8064 - Rougel: 4.7904 - Rougelsum: 5.1785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 8.1803 | 1.0 | 225 | 3.4063 | 4.8262 | 1.0677 | 4.1029 | 4.6438 | | 4.1012 | 2.0 | 450 | 3.2004 | 4.888 | 1.2529 | 4.0737 | 4.6698 | | 3.8386 | 3.0 | 675 | 3.1341 | 5.0027 | 1.1715 | 4.1397 | 4.7616 | | 3.6986 | 4.0 | 900 | 3.0698 | 5.3287 | 1.6223 | 4.6697 | 5.0159 | | 3.6007 | 5.0 | 1125 | 3.0346 | 5.5318 | 1.7741 | 4.8195 | 5.2351 | | 3.5376 | 6.0 | 1350 | 3.0039 | 4.5345 | 1.3055 | 4.0118 | 4.3259 | | 3.4794 | 7.0 | 1575 | 2.9845 | 4.755 | 1.5096 | 4.2156 | 4.5376 | | 3.4373 | 8.0 | 1800 | 2.9699 | 4.6843 | 1.409 | 4.0942 | 4.4492 | | 3.4007 | 9.0 | 2025 | 2.9569 | 5.5517 | 1.8103 | 4.8226 | 5.2639 | | 3.3788 | 10.0 | 2250 | 2.9415 | 5.4873 | 1.8689 | 4.8027 | 5.2162 | | 3.3549 | 11.0 | 2475 | 2.9429 | 5.3814 | 1.7672 | 4.7337 | 5.1079 | | 3.3386 | 12.0 | 2700 | 2.9338 | 5.4238 | 1.7718 | 4.7339 | 5.1216 | | 3.3195 | 13.0 | 2925 | 2.9224 | 5.4666 | 1.8941 | 4.79 | 5.1824 | | 3.311 | 14.0 | 3150 | 2.9223 | 5.4197 | 1.7975 | 4.7752 | 5.1176 | | 3.3027 | 15.0 | 3375 | 2.9202 | 5.494 | 1.8446 | 4.7876 | 5.1981 | | 3.2961 | 16.0 | 3600 | 2.9193 | 5.4727 | 1.8064 | 4.7904 | 5.1785 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1