Hamze-Hammami commited on
Commit
0cfe806
1 Parent(s): 2d430a6

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1720116548.3e4cb6262246 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:880e00124a428f81a3e8b1c8785ab544957b8f885c6809041fe473eb51eddd50
3
+ size 207920
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 7.36 +/- 5.32
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r Hamze-Hammami/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000751_3076096_reward_24.514.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b04cfdb14a772fede13f536b82e5ee0033d0b2ee5d5564479c456bdb1efdfd3c
3
+ size 34929051
checkpoint_p0/checkpoint_000000491_2011136.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d68b0c8fdd0c5726350712728fd43585cd83c443b750b6af9a87ad7cb4f24904
3
+ size 34929477
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6c79cdcfb1b049ab5afbed74280f1b4e9cc338c3d448d38bb77d8f39b8ca83a
3
+ size 34929477
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/content/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
142
+ }
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ced743639fc29ef7d78402b1408d51cd9830f3ea6ed03067e3e65045fad74e
3
+ size 14323611
sf_log.txt ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-07-04 18:09:12,563][02159] Saving configuration to /content/train_dir/default_experiment/config.json...
2
+ [2024-07-04 18:09:12,565][02159] Rollout worker 0 uses device cpu
3
+ [2024-07-04 18:09:12,566][02159] Rollout worker 1 uses device cpu
4
+ [2024-07-04 18:09:12,567][02159] Rollout worker 2 uses device cpu
5
+ [2024-07-04 18:09:12,568][02159] Rollout worker 3 uses device cpu
6
+ [2024-07-04 18:09:12,571][02159] Rollout worker 4 uses device cpu
7
+ [2024-07-04 18:09:12,571][02159] Rollout worker 5 uses device cpu
8
+ [2024-07-04 18:09:12,573][02159] Rollout worker 6 uses device cpu
9
+ [2024-07-04 18:09:12,574][02159] Rollout worker 7 uses device cpu
10
+ [2024-07-04 18:09:12,672][02159] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2024-07-04 18:09:12,673][02159] InferenceWorker_p0-w0: min num requests: 2
12
+ [2024-07-04 18:09:12,706][02159] Starting all processes...
13
+ [2024-07-04 18:09:12,707][02159] Starting process learner_proc0
14
+ [2024-07-04 18:09:14,405][02159] Starting all processes...
15
+ [2024-07-04 18:09:14,411][02159] Starting process inference_proc0-0
16
+ [2024-07-04 18:09:14,411][02159] Starting process rollout_proc0
17
+ [2024-07-04 18:09:14,412][02159] Starting process rollout_proc1
18
+ [2024-07-04 18:09:14,413][02159] Starting process rollout_proc2
19
+ [2024-07-04 18:09:14,413][02159] Starting process rollout_proc3
20
+ [2024-07-04 18:09:14,414][02159] Starting process rollout_proc4
21
+ [2024-07-04 18:09:14,414][02159] Starting process rollout_proc5
22
+ [2024-07-04 18:09:14,416][02159] Starting process rollout_proc6
23
+ [2024-07-04 18:09:14,420][02159] Starting process rollout_proc7
24
+ [2024-07-04 18:09:17,137][04783] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
25
+ [2024-07-04 18:09:17,169][04785] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
26
+ [2024-07-04 18:09:17,196][04768] Using GPUs [0] for process 0 (actually maps to GPUs [0])
27
+ [2024-07-04 18:09:17,197][04768] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
28
+ [2024-07-04 18:09:17,215][04768] Num visible devices: 1
29
+ [2024-07-04 18:09:17,250][04768] Starting seed is not provided
30
+ [2024-07-04 18:09:17,251][04768] Using GPUs [0] for process 0 (actually maps to GPUs [0])
31
+ [2024-07-04 18:09:17,251][04768] Initializing actor-critic model on device cuda:0
32
+ [2024-07-04 18:09:17,252][04768] RunningMeanStd input shape: (3, 72, 128)
33
+ [2024-07-04 18:09:17,254][04768] RunningMeanStd input shape: (1,)
34
+ [2024-07-04 18:09:17,275][04768] ConvEncoder: input_channels=3
35
+ [2024-07-04 18:09:17,375][04786] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
36
+ [2024-07-04 18:09:17,477][04782] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
37
+ [2024-07-04 18:09:17,483][04784] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
38
+ [2024-07-04 18:09:17,532][04789] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
39
+ [2024-07-04 18:09:17,536][04781] Using GPUs [0] for process 0 (actually maps to GPUs [0])
40
+ [2024-07-04 18:09:17,536][04781] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
41
+ [2024-07-04 18:09:17,538][04788] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
42
+ [2024-07-04 18:09:17,552][04781] Num visible devices: 1
43
+ [2024-07-04 18:09:17,563][04768] Conv encoder output size: 512
44
+ [2024-07-04 18:09:17,564][04768] Policy head output size: 512
45
+ [2024-07-04 18:09:17,614][04787] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
46
+ [2024-07-04 18:09:17,618][04768] Created Actor Critic model with architecture:
47
+ [2024-07-04 18:09:17,618][04768] ActorCriticSharedWeights(
48
+ (obs_normalizer): ObservationNormalizer(
49
+ (running_mean_std): RunningMeanStdDictInPlace(
50
+ (running_mean_std): ModuleDict(
51
+ (obs): RunningMeanStdInPlace()
52
+ )
53
+ )
54
+ )
55
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
56
+ (encoder): VizdoomEncoder(
57
+ (basic_encoder): ConvEncoder(
58
+ (enc): RecursiveScriptModule(
59
+ original_name=ConvEncoderImpl
60
+ (conv_head): RecursiveScriptModule(
61
+ original_name=Sequential
62
+ (0): RecursiveScriptModule(original_name=Conv2d)
63
+ (1): RecursiveScriptModule(original_name=ELU)
64
+ (2): RecursiveScriptModule(original_name=Conv2d)
65
+ (3): RecursiveScriptModule(original_name=ELU)
66
+ (4): RecursiveScriptModule(original_name=Conv2d)
67
+ (5): RecursiveScriptModule(original_name=ELU)
68
+ )
69
+ (mlp_layers): RecursiveScriptModule(
70
+ original_name=Sequential
71
+ (0): RecursiveScriptModule(original_name=Linear)
72
+ (1): RecursiveScriptModule(original_name=ELU)
73
+ )
74
+ )
75
+ )
76
+ )
77
+ (core): ModelCoreRNN(
78
+ (core): GRU(512, 512)
79
+ )
80
+ (decoder): MlpDecoder(
81
+ (mlp): Identity()
82
+ )
83
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
84
+ (action_parameterization): ActionParameterizationDefault(
85
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
86
+ )
87
+ )
88
+ [2024-07-04 18:09:17,843][04768] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2024-07-04 18:09:18,814][04768] No checkpoints found
90
+ [2024-07-04 18:09:18,815][04768] Did not load from checkpoint, starting from scratch!
91
+ [2024-07-04 18:09:18,815][04768] Initialized policy 0 weights for model version 0
92
+ [2024-07-04 18:09:18,817][04768] LearnerWorker_p0 finished initialization!
93
+ [2024-07-04 18:09:18,817][04768] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2024-07-04 18:09:18,904][04781] RunningMeanStd input shape: (3, 72, 128)
95
+ [2024-07-04 18:09:18,905][04781] RunningMeanStd input shape: (1,)
96
+ [2024-07-04 18:09:18,917][04781] ConvEncoder: input_channels=3
97
+ [2024-07-04 18:09:19,026][04781] Conv encoder output size: 512
98
+ [2024-07-04 18:09:19,027][04781] Policy head output size: 512
99
+ [2024-07-04 18:09:19,085][02159] Inference worker 0-0 is ready!
100
+ [2024-07-04 18:09:19,087][02159] All inference workers are ready! Signal rollout workers to start!
101
+ [2024-07-04 18:09:19,129][04786] Doom resolution: 160x120, resize resolution: (128, 72)
102
+ [2024-07-04 18:09:19,134][04789] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2024-07-04 18:09:19,137][04784] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2024-07-04 18:09:19,138][04785] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2024-07-04 18:09:19,141][04783] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2024-07-04 18:09:19,143][04782] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2024-07-04 18:09:19,144][04788] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2024-07-04 18:09:19,148][04787] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2024-07-04 18:09:19,456][04785] Decorrelating experience for 0 frames...
110
+ [2024-07-04 18:09:19,456][04788] Decorrelating experience for 0 frames...
111
+ [2024-07-04 18:09:19,456][04789] Decorrelating experience for 0 frames...
112
+ [2024-07-04 18:09:19,456][04786] Decorrelating experience for 0 frames...
113
+ [2024-07-04 18:09:19,703][04783] Decorrelating experience for 0 frames...
114
+ [2024-07-04 18:09:19,710][04787] Decorrelating experience for 0 frames...
115
+ [2024-07-04 18:09:19,731][04788] Decorrelating experience for 32 frames...
116
+ [2024-07-04 18:09:19,733][04785] Decorrelating experience for 32 frames...
117
+ [2024-07-04 18:09:19,733][04789] Decorrelating experience for 32 frames...
118
+ [2024-07-04 18:09:19,740][04784] Decorrelating experience for 0 frames...
119
+ [2024-07-04 18:09:19,994][04784] Decorrelating experience for 32 frames...
120
+ [2024-07-04 18:09:20,029][04783] Decorrelating experience for 32 frames...
121
+ [2024-07-04 18:09:20,036][04782] Decorrelating experience for 0 frames...
122
+ [2024-07-04 18:09:20,038][04787] Decorrelating experience for 32 frames...
123
+ [2024-07-04 18:09:20,081][04785] Decorrelating experience for 64 frames...
124
+ [2024-07-04 18:09:20,106][04788] Decorrelating experience for 64 frames...
125
+ [2024-07-04 18:09:20,271][04786] Decorrelating experience for 32 frames...
126
+ [2024-07-04 18:09:20,282][04782] Decorrelating experience for 32 frames...
127
+ [2024-07-04 18:09:20,335][04789] Decorrelating experience for 64 frames...
128
+ [2024-07-04 18:09:20,377][04787] Decorrelating experience for 64 frames...
129
+ [2024-07-04 18:09:20,395][04784] Decorrelating experience for 64 frames...
130
+ [2024-07-04 18:09:20,407][04785] Decorrelating experience for 96 frames...
131
+ [2024-07-04 18:09:20,548][04783] Decorrelating experience for 64 frames...
132
+ [2024-07-04 18:09:20,627][04786] Decorrelating experience for 64 frames...
133
+ [2024-07-04 18:09:20,699][04787] Decorrelating experience for 96 frames...
134
+ [2024-07-04 18:09:20,704][04782] Decorrelating experience for 64 frames...
135
+ [2024-07-04 18:09:20,818][04784] Decorrelating experience for 96 frames...
136
+ [2024-07-04 18:09:20,866][04783] Decorrelating experience for 96 frames...
137
+ [2024-07-04 18:09:20,895][04789] Decorrelating experience for 96 frames...
138
+ [2024-07-04 18:09:20,979][04788] Decorrelating experience for 96 frames...
139
+ [2024-07-04 18:09:21,033][04782] Decorrelating experience for 96 frames...
140
+ [2024-07-04 18:09:21,119][04786] Decorrelating experience for 96 frames...
141
+ [2024-07-04 18:09:22,008][04768] Signal inference workers to stop experience collection...
142
+ [2024-07-04 18:09:22,013][04781] InferenceWorker_p0-w0: stopping experience collection
143
+ [2024-07-04 18:09:23,523][02159] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 2216. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
144
+ [2024-07-04 18:09:23,525][02159] Avg episode reward: [(0, '1.747')]
145
+ [2024-07-04 18:09:23,826][04768] Signal inference workers to resume experience collection...
146
+ [2024-07-04 18:09:23,827][04781] InferenceWorker_p0-w0: resuming experience collection
147
+ [2024-07-04 18:09:25,945][04781] Updated weights for policy 0, policy_version 10 (0.0194)
148
+ [2024-07-04 18:09:28,220][04781] Updated weights for policy 0, policy_version 20 (0.0013)
149
+ [2024-07-04 18:09:28,524][02159] Fps is (10 sec: 17202.3, 60 sec: 17202.3, 300 sec: 17202.3). Total num frames: 86016. Throughput: 0: 3623.8. Samples: 20336. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
150
+ [2024-07-04 18:09:28,526][02159] Avg episode reward: [(0, '4.635')]
151
+ [2024-07-04 18:09:30,328][04781] Updated weights for policy 0, policy_version 30 (0.0013)
152
+ [2024-07-04 18:09:32,417][04781] Updated weights for policy 0, policy_version 40 (0.0013)
153
+ [2024-07-04 18:09:32,664][02159] Heartbeat connected on Batcher_0
154
+ [2024-07-04 18:09:32,668][02159] Heartbeat connected on LearnerWorker_p0
155
+ [2024-07-04 18:09:32,677][02159] Heartbeat connected on InferenceWorker_p0-w0
156
+ [2024-07-04 18:09:32,680][02159] Heartbeat connected on RolloutWorker_w0
157
+ [2024-07-04 18:09:32,683][02159] Heartbeat connected on RolloutWorker_w1
158
+ [2024-07-04 18:09:32,688][02159] Heartbeat connected on RolloutWorker_w2
159
+ [2024-07-04 18:09:32,691][02159] Heartbeat connected on RolloutWorker_w3
160
+ [2024-07-04 18:09:32,695][02159] Heartbeat connected on RolloutWorker_w4
161
+ [2024-07-04 18:09:32,698][02159] Heartbeat connected on RolloutWorker_w5
162
+ [2024-07-04 18:09:32,704][02159] Heartbeat connected on RolloutWorker_w6
163
+ [2024-07-04 18:09:32,711][02159] Heartbeat connected on RolloutWorker_w7
164
+ [2024-07-04 18:09:33,523][02159] Fps is (10 sec: 18432.0, 60 sec: 18432.0, 300 sec: 18432.0). Total num frames: 184320. Throughput: 0: 3273.0. Samples: 34946. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
165
+ [2024-07-04 18:09:33,526][02159] Avg episode reward: [(0, '4.434')]
166
+ [2024-07-04 18:09:33,528][04768] Saving new best policy, reward=4.434!
167
+ [2024-07-04 18:09:34,517][04781] Updated weights for policy 0, policy_version 50 (0.0012)
168
+ [2024-07-04 18:09:36,609][04781] Updated weights for policy 0, policy_version 60 (0.0012)
169
+ [2024-07-04 18:09:38,523][02159] Fps is (10 sec: 19661.1, 60 sec: 18841.4, 300 sec: 18841.4). Total num frames: 282624. Throughput: 0: 4144.0. Samples: 64376. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
170
+ [2024-07-04 18:09:38,526][02159] Avg episode reward: [(0, '4.774')]
171
+ [2024-07-04 18:09:38,533][04768] Saving new best policy, reward=4.774!
172
+ [2024-07-04 18:09:38,692][04781] Updated weights for policy 0, policy_version 70 (0.0013)
173
+ [2024-07-04 18:09:41,053][04781] Updated weights for policy 0, policy_version 80 (0.0013)
174
+ [2024-07-04 18:09:43,239][04781] Updated weights for policy 0, policy_version 90 (0.0013)
175
+ [2024-07-04 18:09:43,523][02159] Fps is (10 sec: 18841.6, 60 sec: 18636.8, 300 sec: 18636.8). Total num frames: 372736. Throughput: 0: 4497.4. Samples: 92164. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
176
+ [2024-07-04 18:09:43,525][02159] Avg episode reward: [(0, '4.653')]
177
+ [2024-07-04 18:09:45,347][04781] Updated weights for policy 0, policy_version 100 (0.0013)
178
+ [2024-07-04 18:09:47,462][04781] Updated weights for policy 0, policy_version 110 (0.0012)
179
+ [2024-07-04 18:09:48,524][02159] Fps is (10 sec: 18841.6, 60 sec: 18841.5, 300 sec: 18841.5). Total num frames: 471040. Throughput: 0: 4185.4. Samples: 106852. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
180
+ [2024-07-04 18:09:48,525][02159] Avg episode reward: [(0, '4.497')]
181
+ [2024-07-04 18:09:49,551][04781] Updated weights for policy 0, policy_version 120 (0.0013)
182
+ [2024-07-04 18:09:51,638][04781] Updated weights for policy 0, policy_version 130 (0.0013)
183
+ [2024-07-04 18:09:53,523][02159] Fps is (10 sec: 19251.0, 60 sec: 18841.5, 300 sec: 18841.5). Total num frames: 565248. Throughput: 0: 4462.7. Samples: 136096. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
184
+ [2024-07-04 18:09:53,526][02159] Avg episode reward: [(0, '4.762')]
185
+ [2024-07-04 18:09:53,791][04781] Updated weights for policy 0, policy_version 140 (0.0012)
186
+ [2024-07-04 18:09:56,018][04781] Updated weights for policy 0, policy_version 150 (0.0013)
187
+ [2024-07-04 18:09:58,139][04781] Updated weights for policy 0, policy_version 160 (0.0013)
188
+ [2024-07-04 18:09:58,523][02159] Fps is (10 sec: 18841.7, 60 sec: 18841.5, 300 sec: 18841.5). Total num frames: 659456. Throughput: 0: 4634.4. Samples: 164422. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
189
+ [2024-07-04 18:09:58,526][02159] Avg episode reward: [(0, '4.845')]
190
+ [2024-07-04 18:09:58,556][04768] Saving new best policy, reward=4.845!
191
+ [2024-07-04 18:10:00,250][04781] Updated weights for policy 0, policy_version 170 (0.0012)
192
+ [2024-07-04 18:10:02,341][04781] Updated weights for policy 0, policy_version 180 (0.0013)
193
+ [2024-07-04 18:10:03,523][02159] Fps is (10 sec: 19251.2, 60 sec: 18943.9, 300 sec: 18943.9). Total num frames: 757760. Throughput: 0: 4418.0. Samples: 178936. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
194
+ [2024-07-04 18:10:03,525][02159] Avg episode reward: [(0, '5.081')]
195
+ [2024-07-04 18:10:03,528][04768] Saving new best policy, reward=5.081!
196
+ [2024-07-04 18:10:04,433][04781] Updated weights for policy 0, policy_version 190 (0.0012)
197
+ [2024-07-04 18:10:06,526][04781] Updated weights for policy 0, policy_version 200 (0.0012)
198
+ [2024-07-04 18:10:08,523][02159] Fps is (10 sec: 19660.8, 60 sec: 19023.6, 300 sec: 19023.6). Total num frames: 856064. Throughput: 0: 4576.0. Samples: 208138. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
199
+ [2024-07-04 18:10:08,525][02159] Avg episode reward: [(0, '5.253')]
200
+ [2024-07-04 18:10:08,533][04768] Saving new best policy, reward=5.253!
201
+ [2024-07-04 18:10:08,725][04781] Updated weights for policy 0, policy_version 210 (0.0012)
202
+ [2024-07-04 18:10:10,926][04781] Updated weights for policy 0, policy_version 220 (0.0012)
203
+ [2024-07-04 18:10:13,010][04781] Updated weights for policy 0, policy_version 230 (0.0012)
204
+ [2024-07-04 18:10:13,523][02159] Fps is (10 sec: 19251.2, 60 sec: 19005.4, 300 sec: 19005.4). Total num frames: 950272. Throughput: 0: 4805.5. Samples: 236584. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
205
+ [2024-07-04 18:10:13,525][02159] Avg episode reward: [(0, '5.371')]
206
+ [2024-07-04 18:10:13,528][04768] Saving new best policy, reward=5.371!
207
+ [2024-07-04 18:10:15,118][04781] Updated weights for policy 0, policy_version 240 (0.0012)
208
+ [2024-07-04 18:10:17,219][04781] Updated weights for policy 0, policy_version 250 (0.0012)
209
+ [2024-07-04 18:10:18,523][02159] Fps is (10 sec: 18841.6, 60 sec: 18990.5, 300 sec: 18990.5). Total num frames: 1044480. Throughput: 0: 4807.7. Samples: 251294. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
210
+ [2024-07-04 18:10:18,526][02159] Avg episode reward: [(0, '5.741')]
211
+ [2024-07-04 18:10:18,535][04768] Saving new best policy, reward=5.741!
212
+ [2024-07-04 18:10:19,379][04781] Updated weights for policy 0, policy_version 260 (0.0012)
213
+ [2024-07-04 18:10:21,511][04781] Updated weights for policy 0, policy_version 270 (0.0013)
214
+ [2024-07-04 18:10:23,523][02159] Fps is (10 sec: 19251.2, 60 sec: 19046.4, 300 sec: 19046.4). Total num frames: 1142784. Throughput: 0: 4790.5. Samples: 279948. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
215
+ [2024-07-04 18:10:23,525][02159] Avg episode reward: [(0, '5.533')]
216
+ [2024-07-04 18:10:23,692][04781] Updated weights for policy 0, policy_version 280 (0.0012)
217
+ [2024-07-04 18:10:25,797][04781] Updated weights for policy 0, policy_version 290 (0.0012)
218
+ [2024-07-04 18:10:27,852][04781] Updated weights for policy 0, policy_version 300 (0.0013)
219
+ [2024-07-04 18:10:28,523][02159] Fps is (10 sec: 19660.8, 60 sec: 19251.3, 300 sec: 19093.6). Total num frames: 1241088. Throughput: 0: 4816.7. Samples: 308914. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
220
+ [2024-07-04 18:10:28,526][02159] Avg episode reward: [(0, '6.158')]
221
+ [2024-07-04 18:10:28,533][04768] Saving new best policy, reward=6.158!
222
+ [2024-07-04 18:10:29,948][04781] Updated weights for policy 0, policy_version 310 (0.0013)
223
+ [2024-07-04 18:10:32,065][04781] Updated weights for policy 0, policy_version 320 (0.0012)
224
+ [2024-07-04 18:10:33,523][02159] Fps is (10 sec: 19660.9, 60 sec: 19251.2, 300 sec: 19134.1). Total num frames: 1339392. Throughput: 0: 4816.4. Samples: 323590. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
225
+ [2024-07-04 18:10:33,526][02159] Avg episode reward: [(0, '6.725')]
226
+ [2024-07-04 18:10:33,528][04768] Saving new best policy, reward=6.725!
227
+ [2024-07-04 18:10:34,147][04781] Updated weights for policy 0, policy_version 330 (0.0012)
228
+ [2024-07-04 18:10:36,343][04781] Updated weights for policy 0, policy_version 340 (0.0012)
229
+ [2024-07-04 18:10:38,512][04781] Updated weights for policy 0, policy_version 350 (0.0012)
230
+ [2024-07-04 18:10:38,523][02159] Fps is (10 sec: 19251.2, 60 sec: 19182.9, 300 sec: 19114.6). Total num frames: 1433600. Throughput: 0: 4803.1. Samples: 352236. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
231
+ [2024-07-04 18:10:38,526][02159] Avg episode reward: [(0, '7.359')]
232
+ [2024-07-04 18:10:38,532][04768] Saving new best policy, reward=7.359!
233
+ [2024-07-04 18:10:40,619][04781] Updated weights for policy 0, policy_version 360 (0.0012)
234
+ [2024-07-04 18:10:42,724][04781] Updated weights for policy 0, policy_version 370 (0.0012)
235
+ [2024-07-04 18:10:43,523][02159] Fps is (10 sec: 18841.5, 60 sec: 19251.2, 300 sec: 19097.6). Total num frames: 1527808. Throughput: 0: 4823.8. Samples: 381494. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
236
+ [2024-07-04 18:10:43,526][02159] Avg episode reward: [(0, '7.402')]
237
+ [2024-07-04 18:10:43,529][04768] Saving new best policy, reward=7.402!
238
+ [2024-07-04 18:10:44,833][04781] Updated weights for policy 0, policy_version 380 (0.0013)
239
+ [2024-07-04 18:10:46,918][04781] Updated weights for policy 0, policy_version 390 (0.0012)
240
+ [2024-07-04 18:10:48,524][02159] Fps is (10 sec: 19251.1, 60 sec: 19251.2, 300 sec: 19130.7). Total num frames: 1626112. Throughput: 0: 4825.1. Samples: 396064. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
241
+ [2024-07-04 18:10:48,526][02159] Avg episode reward: [(0, '8.141')]
242
+ [2024-07-04 18:10:48,533][04768] Saving new best policy, reward=8.141!
243
+ [2024-07-04 18:10:49,038][04781] Updated weights for policy 0, policy_version 400 (0.0012)
244
+ [2024-07-04 18:10:51,201][04781] Updated weights for policy 0, policy_version 410 (0.0012)
245
+ [2024-07-04 18:10:53,334][04781] Updated weights for policy 0, policy_version 420 (0.0013)
246
+ [2024-07-04 18:10:53,523][02159] Fps is (10 sec: 19251.3, 60 sec: 19251.2, 300 sec: 19114.6). Total num frames: 1720320. Throughput: 0: 4812.4. Samples: 424696. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
247
+ [2024-07-04 18:10:53,525][02159] Avg episode reward: [(0, '9.569')]
248
+ [2024-07-04 18:10:53,538][04768] Saving new best policy, reward=9.569!
249
+ [2024-07-04 18:10:55,428][04781] Updated weights for policy 0, policy_version 430 (0.0012)
250
+ [2024-07-04 18:10:57,514][04781] Updated weights for policy 0, policy_version 440 (0.0012)
251
+ [2024-07-04 18:10:58,523][02159] Fps is (10 sec: 19251.4, 60 sec: 19319.5, 300 sec: 19143.4). Total num frames: 1818624. Throughput: 0: 4832.3. Samples: 454038. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
252
+ [2024-07-04 18:10:58,526][02159] Avg episode reward: [(0, '8.960')]
253
+ [2024-07-04 18:10:59,608][04781] Updated weights for policy 0, policy_version 450 (0.0012)
254
+ [2024-07-04 18:11:01,664][04781] Updated weights for policy 0, policy_version 460 (0.0012)
255
+ [2024-07-04 18:11:03,523][02159] Fps is (10 sec: 19660.7, 60 sec: 19319.5, 300 sec: 19169.3). Total num frames: 1916928. Throughput: 0: 4832.0. Samples: 468736. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
256
+ [2024-07-04 18:11:03,525][02159] Avg episode reward: [(0, '10.328')]
257
+ [2024-07-04 18:11:03,528][04768] Saving new best policy, reward=10.328!
258
+ [2024-07-04 18:11:03,833][04781] Updated weights for policy 0, policy_version 470 (0.0012)
259
+ [2024-07-04 18:11:06,003][04781] Updated weights for policy 0, policy_version 480 (0.0013)
260
+ [2024-07-04 18:11:08,155][04781] Updated weights for policy 0, policy_version 490 (0.0012)
261
+ [2024-07-04 18:11:08,523][02159] Fps is (10 sec: 19251.1, 60 sec: 19251.2, 300 sec: 19153.6). Total num frames: 2011136. Throughput: 0: 4829.3. Samples: 497268. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
262
+ [2024-07-04 18:11:08,526][02159] Avg episode reward: [(0, '13.755')]
263
+ [2024-07-04 18:11:08,534][04768] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000491_2011136.pth...
264
+ [2024-07-04 18:11:08,612][04768] Saving new best policy, reward=13.755!
265
+ [2024-07-04 18:11:10,263][04781] Updated weights for policy 0, policy_version 500 (0.0012)
266
+ [2024-07-04 18:11:12,331][04781] Updated weights for policy 0, policy_version 510 (0.0013)
267
+ [2024-07-04 18:11:13,523][02159] Fps is (10 sec: 19251.3, 60 sec: 19319.5, 300 sec: 19176.7). Total num frames: 2109440. Throughput: 0: 4839.0. Samples: 526670. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
268
+ [2024-07-04 18:11:13,526][02159] Avg episode reward: [(0, '14.175')]
269
+ [2024-07-04 18:11:13,528][04768] Saving new best policy, reward=14.175!
270
+ [2024-07-04 18:11:14,398][04781] Updated weights for policy 0, policy_version 520 (0.0013)
271
+ [2024-07-04 18:11:16,508][04781] Updated weights for policy 0, policy_version 530 (0.0012)
272
+ [2024-07-04 18:11:18,523][02159] Fps is (10 sec: 19660.8, 60 sec: 19387.7, 300 sec: 19197.8). Total num frames: 2207744. Throughput: 0: 4839.9. Samples: 541384. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
273
+ [2024-07-04 18:11:18,526][02159] Avg episode reward: [(0, '14.465')]
274
+ [2024-07-04 18:11:18,533][04768] Saving new best policy, reward=14.465!
275
+ [2024-07-04 18:11:18,732][04781] Updated weights for policy 0, policy_version 540 (0.0013)
276
+ [2024-07-04 18:11:20,903][04781] Updated weights for policy 0, policy_version 550 (0.0012)
277
+ [2024-07-04 18:11:23,008][04781] Updated weights for policy 0, policy_version 560 (0.0013)
278
+ [2024-07-04 18:11:23,523][02159] Fps is (10 sec: 19251.3, 60 sec: 19319.5, 300 sec: 19182.9). Total num frames: 2301952. Throughput: 0: 4828.5. Samples: 569520. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
279
+ [2024-07-04 18:11:23,527][02159] Avg episode reward: [(0, '18.393')]
280
+ [2024-07-04 18:11:23,529][04768] Saving new best policy, reward=18.393!
281
+ [2024-07-04 18:11:25,085][04781] Updated weights for policy 0, policy_version 570 (0.0012)
282
+ [2024-07-04 18:11:27,159][04781] Updated weights for policy 0, policy_version 580 (0.0013)
283
+ [2024-07-04 18:11:28,523][02159] Fps is (10 sec: 19251.3, 60 sec: 19319.5, 300 sec: 19202.0). Total num frames: 2400256. Throughput: 0: 4835.6. Samples: 599096. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
284
+ [2024-07-04 18:11:28,525][02159] Avg episode reward: [(0, '18.739')]
285
+ [2024-07-04 18:11:28,532][04768] Saving new best policy, reward=18.739!
286
+ [2024-07-04 18:11:29,245][04781] Updated weights for policy 0, policy_version 590 (0.0012)
287
+ [2024-07-04 18:11:31,371][04781] Updated weights for policy 0, policy_version 600 (0.0012)
288
+ [2024-07-04 18:11:33,523][02159] Fps is (10 sec: 19251.0, 60 sec: 19251.2, 300 sec: 19188.2). Total num frames: 2494464. Throughput: 0: 4837.0. Samples: 613728. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
289
+ [2024-07-04 18:11:33,526][02159] Avg episode reward: [(0, '18.011')]
290
+ [2024-07-04 18:11:33,578][04781] Updated weights for policy 0, policy_version 610 (0.0013)
291
+ [2024-07-04 18:11:35,675][04781] Updated weights for policy 0, policy_version 620 (0.0012)
292
+ [2024-07-04 18:11:37,718][04781] Updated weights for policy 0, policy_version 630 (0.0012)
293
+ [2024-07-04 18:11:38,524][02159] Fps is (10 sec: 19250.8, 60 sec: 19319.4, 300 sec: 19205.7). Total num frames: 2592768. Throughput: 0: 4840.0. Samples: 642498. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
294
+ [2024-07-04 18:11:38,526][02159] Avg episode reward: [(0, '17.751')]
295
+ [2024-07-04 18:11:39,798][04781] Updated weights for policy 0, policy_version 640 (0.0012)
296
+ [2024-07-04 18:11:41,916][04781] Updated weights for policy 0, policy_version 650 (0.0012)
297
+ [2024-07-04 18:11:43,523][02159] Fps is (10 sec: 19660.8, 60 sec: 19387.7, 300 sec: 19221.9). Total num frames: 2691072. Throughput: 0: 4841.8. Samples: 671918. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
298
+ [2024-07-04 18:11:43,526][02159] Avg episode reward: [(0, '19.244')]
299
+ [2024-07-04 18:11:43,528][04768] Saving new best policy, reward=19.244!
300
+ [2024-07-04 18:11:44,011][04781] Updated weights for policy 0, policy_version 660 (0.0013)
301
+ [2024-07-04 18:11:46,231][04781] Updated weights for policy 0, policy_version 670 (0.0012)
302
+ [2024-07-04 18:11:48,382][04781] Updated weights for policy 0, policy_version 680 (0.0012)
303
+ [2024-07-04 18:11:48,523][02159] Fps is (10 sec: 19251.4, 60 sec: 19319.5, 300 sec: 19208.8). Total num frames: 2785280. Throughput: 0: 4827.6. Samples: 685980. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
304
+ [2024-07-04 18:11:48,526][02159] Avg episode reward: [(0, '18.019')]
305
+ [2024-07-04 18:11:50,460][04781] Updated weights for policy 0, policy_version 690 (0.0012)
306
+ [2024-07-04 18:11:52,522][04781] Updated weights for policy 0, policy_version 700 (0.0012)
307
+ [2024-07-04 18:11:53,523][02159] Fps is (10 sec: 19251.2, 60 sec: 19387.7, 300 sec: 19223.9). Total num frames: 2883584. Throughput: 0: 4844.4. Samples: 715264. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
308
+ [2024-07-04 18:11:53,526][02159] Avg episode reward: [(0, '22.378')]
309
+ [2024-07-04 18:11:53,529][04768] Saving new best policy, reward=22.378!
310
+ [2024-07-04 18:11:54,613][04781] Updated weights for policy 0, policy_version 710 (0.0012)
311
+ [2024-07-04 18:11:56,698][04781] Updated weights for policy 0, policy_version 720 (0.0012)
312
+ [2024-07-04 18:11:58,523][02159] Fps is (10 sec: 19660.8, 60 sec: 19387.7, 300 sec: 19238.0). Total num frames: 2981888. Throughput: 0: 4848.9. Samples: 744872. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
313
+ [2024-07-04 18:11:58,525][02159] Avg episode reward: [(0, '22.491')]
314
+ [2024-07-04 18:11:58,533][04768] Saving new best policy, reward=22.491!
315
+ [2024-07-04 18:11:58,838][04781] Updated weights for policy 0, policy_version 730 (0.0013)
316
+ [2024-07-04 18:12:01,053][04781] Updated weights for policy 0, policy_version 740 (0.0012)
317
+ [2024-07-04 18:12:03,191][04781] Updated weights for policy 0, policy_version 750 (0.0012)
318
+ [2024-07-04 18:12:03,523][02159] Fps is (10 sec: 19251.2, 60 sec: 19319.5, 300 sec: 19225.6). Total num frames: 3076096. Throughput: 0: 4830.9. Samples: 758774. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
319
+ [2024-07-04 18:12:03,526][02159] Avg episode reward: [(0, '24.514')]
320
+ [2024-07-04 18:12:03,528][04768] Saving new best policy, reward=24.514!
321
+ [2024-07-04 18:12:05,289][04781] Updated weights for policy 0, policy_version 760 (0.0013)
322
+ [2024-07-04 18:12:07,391][04781] Updated weights for policy 0, policy_version 770 (0.0013)
323
+ [2024-07-04 18:12:08,523][02159] Fps is (10 sec: 19251.2, 60 sec: 19387.7, 300 sec: 19238.8). Total num frames: 3174400. Throughput: 0: 4854.3. Samples: 787962. Policy #0 lag: (min: 0.0, avg: 0.9, max: 2.0)
324
+ [2024-07-04 18:12:08,526][02159] Avg episode reward: [(0, '21.793')]
325
+ [2024-07-04 18:12:09,440][04781] Updated weights for policy 0, policy_version 780 (0.0011)
326
+ [2024-07-04 18:12:11,521][04781] Updated weights for policy 0, policy_version 790 (0.0013)
327
+ [2024-07-04 18:12:13,523][02159] Fps is (10 sec: 19660.8, 60 sec: 19387.7, 300 sec: 19251.2). Total num frames: 3272704. Throughput: 0: 4844.8. Samples: 817114. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
328
+ [2024-07-04 18:12:13,526][02159] Avg episode reward: [(0, '21.078')]
329
+ [2024-07-04 18:12:13,714][04781] Updated weights for policy 0, policy_version 800 (0.0013)
330
+ [2024-07-04 18:12:15,906][04781] Updated weights for policy 0, policy_version 810 (0.0012)
331
+ [2024-07-04 18:12:17,984][04781] Updated weights for policy 0, policy_version 820 (0.0012)
332
+ [2024-07-04 18:12:18,523][02159] Fps is (10 sec: 19251.1, 60 sec: 19319.5, 300 sec: 19239.5). Total num frames: 3366912. Throughput: 0: 4830.8. Samples: 831114. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
333
+ [2024-07-04 18:12:18,526][02159] Avg episode reward: [(0, '23.839')]
334
+ [2024-07-04 18:12:20,055][04781] Updated weights for policy 0, policy_version 830 (0.0012)
335
+ [2024-07-04 18:12:22,196][04781] Updated weights for policy 0, policy_version 840 (0.0012)
336
+ [2024-07-04 18:12:23,523][02159] Fps is (10 sec: 19251.3, 60 sec: 19387.7, 300 sec: 19251.2). Total num frames: 3465216. Throughput: 0: 4841.9. Samples: 860384. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
337
+ [2024-07-04 18:12:23,525][02159] Avg episode reward: [(0, '21.011')]
338
+ [2024-07-04 18:12:24,272][04781] Updated weights for policy 0, policy_version 850 (0.0012)
339
+ [2024-07-04 18:12:26,415][04781] Updated weights for policy 0, policy_version 860 (0.0012)
340
+ [2024-07-04 18:12:28,523][02159] Fps is (10 sec: 19251.3, 60 sec: 19319.5, 300 sec: 19240.1). Total num frames: 3559424. Throughput: 0: 4825.3. Samples: 889056. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
341
+ [2024-07-04 18:12:28,525][02159] Avg episode reward: [(0, '20.468')]
342
+ [2024-07-04 18:12:28,642][04781] Updated weights for policy 0, policy_version 870 (0.0012)
343
+ [2024-07-04 18:12:30,835][04781] Updated weights for policy 0, policy_version 880 (0.0012)
344
+ [2024-07-04 18:12:32,945][04781] Updated weights for policy 0, policy_version 890 (0.0012)
345
+ [2024-07-04 18:12:33,523][02159] Fps is (10 sec: 18841.5, 60 sec: 19319.5, 300 sec: 19229.6). Total num frames: 3653632. Throughput: 0: 4824.1. Samples: 903066. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
346
+ [2024-07-04 18:12:33,525][02159] Avg episode reward: [(0, '21.472')]
347
+ [2024-07-04 18:12:35,094][04781] Updated weights for policy 0, policy_version 900 (0.0013)
348
+ [2024-07-04 18:12:37,247][04781] Updated weights for policy 0, policy_version 910 (0.0013)
349
+ [2024-07-04 18:12:38,531][02159] Fps is (10 sec: 19236.8, 60 sec: 19317.1, 300 sec: 19240.0). Total num frames: 3751936. Throughput: 0: 4812.4. Samples: 931858. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
350
+ [2024-07-04 18:12:38,536][02159] Avg episode reward: [(0, '21.460')]
351
+ [2024-07-04 18:12:39,358][04781] Updated weights for policy 0, policy_version 920 (0.0012)
352
+ [2024-07-04 18:12:41,534][04781] Updated weights for policy 0, policy_version 930 (0.0013)
353
+ [2024-07-04 18:12:43,523][02159] Fps is (10 sec: 18841.6, 60 sec: 19182.9, 300 sec: 19210.2). Total num frames: 3842048. Throughput: 0: 4783.5. Samples: 960130. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
354
+ [2024-07-04 18:12:43,526][02159] Avg episode reward: [(0, '22.188')]
355
+ [2024-07-04 18:12:43,788][04781] Updated weights for policy 0, policy_version 940 (0.0013)
356
+ [2024-07-04 18:12:45,848][04781] Updated weights for policy 0, policy_version 950 (0.0012)
357
+ [2024-07-04 18:12:47,986][04781] Updated weights for policy 0, policy_version 960 (0.0012)
358
+ [2024-07-04 18:12:48,524][02159] Fps is (10 sec: 18855.5, 60 sec: 19251.2, 300 sec: 19221.2). Total num frames: 3940352. Throughput: 0: 4797.9. Samples: 974678. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
359
+ [2024-07-04 18:12:48,526][02159] Avg episode reward: [(0, '19.636')]
360
+ [2024-07-04 18:12:50,105][04781] Updated weights for policy 0, policy_version 970 (0.0013)
361
+ [2024-07-04 18:12:51,811][04768] Stopping Batcher_0...
362
+ [2024-07-04 18:12:51,811][02159] Component Batcher_0 stopped!
363
+ [2024-07-04 18:12:51,811][04768] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
364
+ [2024-07-04 18:12:51,813][04768] Loop batcher_evt_loop terminating...
365
+ [2024-07-04 18:12:51,829][04785] Stopping RolloutWorker_w2...
366
+ [2024-07-04 18:12:51,829][04785] Loop rollout_proc2_evt_loop terminating...
367
+ [2024-07-04 18:12:51,830][04789] Stopping RolloutWorker_w7...
368
+ [2024-07-04 18:12:51,830][04786] Stopping RolloutWorker_w3...
369
+ [2024-07-04 18:12:51,830][04789] Loop rollout_proc7_evt_loop terminating...
370
+ [2024-07-04 18:12:51,830][04782] Stopping RolloutWorker_w0...
371
+ [2024-07-04 18:12:51,830][04786] Loop rollout_proc3_evt_loop terminating...
372
+ [2024-07-04 18:12:51,831][04787] Stopping RolloutWorker_w5...
373
+ [2024-07-04 18:12:51,829][02159] Component RolloutWorker_w2 stopped!
374
+ [2024-07-04 18:12:51,831][04787] Loop rollout_proc5_evt_loop terminating...
375
+ [2024-07-04 18:12:51,832][04784] Stopping RolloutWorker_w4...
376
+ [2024-07-04 18:12:51,831][04782] Loop rollout_proc0_evt_loop terminating...
377
+ [2024-07-04 18:12:51,832][04784] Loop rollout_proc4_evt_loop terminating...
378
+ [2024-07-04 18:12:51,832][04781] Weights refcount: 2 0
379
+ [2024-07-04 18:12:51,832][04783] Stopping RolloutWorker_w1...
380
+ [2024-07-04 18:12:51,833][04788] Stopping RolloutWorker_w6...
381
+ [2024-07-04 18:12:51,833][04783] Loop rollout_proc1_evt_loop terminating...
382
+ [2024-07-04 18:12:51,833][04788] Loop rollout_proc6_evt_loop terminating...
383
+ [2024-07-04 18:12:51,832][02159] Component RolloutWorker_w7 stopped!
384
+ [2024-07-04 18:12:51,834][04781] Stopping InferenceWorker_p0-w0...
385
+ [2024-07-04 18:12:51,834][04781] Loop inference_proc0-0_evt_loop terminating...
386
+ [2024-07-04 18:12:51,834][02159] Component RolloutWorker_w3 stopped!
387
+ [2024-07-04 18:12:51,835][02159] Component RolloutWorker_w0 stopped!
388
+ [2024-07-04 18:12:51,837][02159] Component RolloutWorker_w5 stopped!
389
+ [2024-07-04 18:12:51,839][02159] Component RolloutWorker_w4 stopped!
390
+ [2024-07-04 18:12:51,840][02159] Component RolloutWorker_w1 stopped!
391
+ [2024-07-04 18:12:51,842][02159] Component RolloutWorker_w6 stopped!
392
+ [2024-07-04 18:12:51,844][02159] Component InferenceWorker_p0-w0 stopped!
393
+ [2024-07-04 18:12:51,891][04768] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
394
+ [2024-07-04 18:12:52,016][04768] Stopping LearnerWorker_p0...
395
+ [2024-07-04 18:12:52,017][04768] Loop learner_proc0_evt_loop terminating...
396
+ [2024-07-04 18:12:52,017][02159] Component LearnerWorker_p0 stopped!
397
+ [2024-07-04 18:12:52,019][02159] Waiting for process learner_proc0 to stop...
398
+ [2024-07-04 18:12:52,805][02159] Waiting for process inference_proc0-0 to join...
399
+ [2024-07-04 18:12:52,807][02159] Waiting for process rollout_proc0 to join...
400
+ [2024-07-04 18:12:52,809][02159] Waiting for process rollout_proc1 to join...
401
+ [2024-07-04 18:12:52,811][02159] Waiting for process rollout_proc2 to join...
402
+ [2024-07-04 18:12:52,813][02159] Waiting for process rollout_proc3 to join...
403
+ [2024-07-04 18:12:52,815][02159] Waiting for process rollout_proc4 to join...
404
+ [2024-07-04 18:12:52,817][02159] Waiting for process rollout_proc5 to join...
405
+ [2024-07-04 18:12:52,818][02159] Waiting for process rollout_proc6 to join...
406
+ [2024-07-04 18:12:52,820][02159] Waiting for process rollout_proc7 to join...
407
+ [2024-07-04 18:12:52,822][02159] Batcher 0 profile tree view:
408
+ batching: 16.0773, releasing_batches: 0.0238
409
+ [2024-07-04 18:12:52,823][02159] InferenceWorker_p0-w0 profile tree view:
410
+ wait_policy: 0.0001
411
+ wait_policy_total: 3.8893
412
+ update_model: 3.4935
413
+ weight_update: 0.0013
414
+ one_step: 0.0030
415
+ handle_policy_step: 194.0125
416
+ deserialize: 7.8810, stack: 1.2906, obs_to_device_normalize: 45.2995, forward: 95.6950, send_messages: 13.1087
417
+ prepare_outputs: 22.0335
418
+ to_cpu: 13.1896
419
+ [2024-07-04 18:12:52,824][02159] Learner 0 profile tree view:
420
+ misc: 0.0049, prepare_batch: 6.6491
421
+ train: 18.5372
422
+ epoch_init: 0.0056, minibatch_init: 0.0063, losses_postprocess: 0.4912, kl_divergence: 0.3722, after_optimizer: 2.0643
423
+ calculate_losses: 8.6103
424
+ losses_init: 0.0036, forward_head: 0.6840, bptt_initial: 4.5650, tail: 0.6411, advantages_returns: 0.1587, losses: 1.1995
425
+ bptt: 1.1848
426
+ bptt_forward_core: 1.1282
427
+ update: 6.6508
428
+ clip: 0.7339
429
+ [2024-07-04 18:12:52,826][02159] RolloutWorker_w0 profile tree view:
430
+ wait_for_trajectories: 0.1520, enqueue_policy_requests: 7.1947, env_step: 135.8228, overhead: 6.3251, complete_rollouts: 0.2324
431
+ save_policy_outputs: 8.8245
432
+ split_output_tensors: 3.5413
433
+ [2024-07-04 18:12:52,828][02159] RolloutWorker_w7 profile tree view:
434
+ wait_for_trajectories: 0.1523, enqueue_policy_requests: 7.1059, env_step: 135.8799, overhead: 6.2706, complete_rollouts: 0.2327
435
+ save_policy_outputs: 8.8091
436
+ split_output_tensors: 3.5261
437
+ [2024-07-04 18:12:52,829][02159] Loop Runner_EvtLoop terminating...
438
+ [2024-07-04 18:12:52,831][02159] Runner profile tree view:
439
+ main_loop: 220.1254
440
+ [2024-07-04 18:12:52,832][02159] Collected {0: 4005888}, FPS: 18198.2
441
+ [2024-07-04 18:15:16,827][02159] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
442
+ [2024-07-04 18:15:16,829][02159] Overriding arg 'num_workers' with value 1 passed from command line
443
+ [2024-07-04 18:15:16,830][02159] Adding new argument 'no_render'=True that is not in the saved config file!
444
+ [2024-07-04 18:15:16,831][02159] Adding new argument 'save_video'=True that is not in the saved config file!
445
+ [2024-07-04 18:15:16,832][02159] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
446
+ [2024-07-04 18:15:16,835][02159] Adding new argument 'video_name'=None that is not in the saved config file!
447
+ [2024-07-04 18:15:16,836][02159] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
448
+ [2024-07-04 18:15:16,837][02159] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
449
+ [2024-07-04 18:15:16,838][02159] Adding new argument 'push_to_hub'=False that is not in the saved config file!
450
+ [2024-07-04 18:15:16,839][02159] Adding new argument 'hf_repository'=None that is not in the saved config file!
451
+ [2024-07-04 18:15:16,841][02159] Adding new argument 'policy_index'=0 that is not in the saved config file!
452
+ [2024-07-04 18:15:16,842][02159] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
453
+ [2024-07-04 18:15:16,843][02159] Adding new argument 'train_script'=None that is not in the saved config file!
454
+ [2024-07-04 18:15:16,845][02159] Adding new argument 'enjoy_script'=None that is not in the saved config file!
455
+ [2024-07-04 18:15:16,845][02159] Using frameskip 1 and render_action_repeat=4 for evaluation
456
+ [2024-07-04 18:15:16,874][02159] Doom resolution: 160x120, resize resolution: (128, 72)
457
+ [2024-07-04 18:15:16,877][02159] RunningMeanStd input shape: (3, 72, 128)
458
+ [2024-07-04 18:15:16,880][02159] RunningMeanStd input shape: (1,)
459
+ [2024-07-04 18:15:16,895][02159] ConvEncoder: input_channels=3
460
+ [2024-07-04 18:15:17,010][02159] Conv encoder output size: 512
461
+ [2024-07-04 18:15:17,013][02159] Policy head output size: 512
462
+ [2024-07-04 18:15:17,168][02159] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
463
+ [2024-07-04 18:15:17,926][02159] Num frames 100...
464
+ [2024-07-04 18:15:18,058][02159] Num frames 200...
465
+ [2024-07-04 18:15:18,211][02159] Num frames 300...
466
+ [2024-07-04 18:15:18,341][02159] Num frames 400...
467
+ [2024-07-04 18:15:18,418][02159] Avg episode rewards: #0: 5.160, true rewards: #0: 4.160
468
+ [2024-07-04 18:15:18,420][02159] Avg episode reward: 5.160, avg true_objective: 4.160
469
+ [2024-07-04 18:15:18,528][02159] Num frames 500...
470
+ [2024-07-04 18:15:18,655][02159] Num frames 600...
471
+ [2024-07-04 18:15:18,779][02159] Num frames 700...
472
+ [2024-07-04 18:15:18,907][02159] Num frames 800...
473
+ [2024-07-04 18:15:19,032][02159] Num frames 900...
474
+ [2024-07-04 18:15:19,161][02159] Avg episode rewards: #0: 7.300, true rewards: #0: 4.800
475
+ [2024-07-04 18:15:19,162][02159] Avg episode reward: 7.300, avg true_objective: 4.800
476
+ [2024-07-04 18:15:19,216][02159] Num frames 1000...
477
+ [2024-07-04 18:15:19,342][02159] Num frames 1100...
478
+ [2024-07-04 18:15:19,470][02159] Num frames 1200...
479
+ [2024-07-04 18:15:19,599][02159] Num frames 1300...
480
+ [2024-07-04 18:15:19,728][02159] Num frames 1400...
481
+ [2024-07-04 18:15:19,857][02159] Num frames 1500...
482
+ [2024-07-04 18:15:19,984][02159] Num frames 1600...
483
+ [2024-07-04 18:15:20,112][02159] Num frames 1700...
484
+ [2024-07-04 18:15:20,238][02159] Num frames 1800...
485
+ [2024-07-04 18:15:20,365][02159] Num frames 1900...
486
+ [2024-07-04 18:15:20,493][02159] Num frames 2000...
487
+ [2024-07-04 18:15:20,622][02159] Num frames 2100...
488
+ [2024-07-04 18:15:20,751][02159] Num frames 2200...
489
+ [2024-07-04 18:15:20,879][02159] Num frames 2300...
490
+ [2024-07-04 18:15:20,939][02159] Avg episode rewards: #0: 14.347, true rewards: #0: 7.680
491
+ [2024-07-04 18:15:20,940][02159] Avg episode reward: 14.347, avg true_objective: 7.680
492
+ [2024-07-04 18:15:21,061][02159] Num frames 2400...
493
+ [2024-07-04 18:15:21,188][02159] Num frames 2500...
494
+ [2024-07-04 18:15:21,316][02159] Num frames 2600...
495
+ [2024-07-04 18:15:21,442][02159] Num frames 2700...
496
+ [2024-07-04 18:15:21,571][02159] Num frames 2800...
497
+ [2024-07-04 18:15:21,701][02159] Num frames 2900...
498
+ [2024-07-04 18:15:21,828][02159] Num frames 3000...
499
+ [2024-07-04 18:15:21,954][02159] Num frames 3100...
500
+ [2024-07-04 18:15:22,089][02159] Num frames 3200...
501
+ [2024-07-04 18:15:22,189][02159] Avg episode rewards: #0: 14.830, true rewards: #0: 8.080
502
+ [2024-07-04 18:15:22,190][02159] Avg episode reward: 14.830, avg true_objective: 8.080
503
+ [2024-07-04 18:15:22,281][02159] Num frames 3300...
504
+ [2024-07-04 18:15:22,410][02159] Num frames 3400...
505
+ [2024-07-04 18:15:22,538][02159] Num frames 3500...
506
+ [2024-07-04 18:15:22,666][02159] Num frames 3600...
507
+ [2024-07-04 18:15:22,795][02159] Num frames 3700...
508
+ [2024-07-04 18:15:22,927][02159] Num frames 3800...
509
+ [2024-07-04 18:15:23,057][02159] Num frames 3900...
510
+ [2024-07-04 18:15:23,190][02159] Num frames 4000...
511
+ [2024-07-04 18:15:23,313][02159] Avg episode rewards: #0: 15.902, true rewards: #0: 8.102
512
+ [2024-07-04 18:15:23,314][02159] Avg episode reward: 15.902, avg true_objective: 8.102
513
+ [2024-07-04 18:15:23,385][02159] Num frames 4100...
514
+ [2024-07-04 18:15:23,521][02159] Num frames 4200...
515
+ [2024-07-04 18:15:23,657][02159] Num frames 4300...
516
+ [2024-07-04 18:15:23,791][02159] Num frames 4400...
517
+ [2024-07-04 18:15:23,927][02159] Num frames 4500...
518
+ [2024-07-04 18:15:24,061][02159] Num frames 4600...
519
+ [2024-07-04 18:15:24,195][02159] Num frames 4700...
520
+ [2024-07-04 18:15:24,328][02159] Num frames 4800...
521
+ [2024-07-04 18:15:24,461][02159] Num frames 4900...
522
+ [2024-07-04 18:15:24,595][02159] Num frames 5000...
523
+ [2024-07-04 18:15:24,783][02159] Avg episode rewards: #0: 16.792, true rewards: #0: 8.458
524
+ [2024-07-04 18:15:24,785][02159] Avg episode reward: 16.792, avg true_objective: 8.458
525
+ [2024-07-04 18:15:24,823][02159] Num frames 5100...
526
+ [2024-07-04 18:15:24,948][02159] Num frames 5200...
527
+ [2024-07-04 18:15:25,074][02159] Num frames 5300...
528
+ [2024-07-04 18:15:25,200][02159] Num frames 5400...
529
+ [2024-07-04 18:15:25,325][02159] Num frames 5500...
530
+ [2024-07-04 18:15:25,455][02159] Num frames 5600...
531
+ [2024-07-04 18:15:25,583][02159] Num frames 5700...
532
+ [2024-07-04 18:15:25,710][02159] Num frames 5800...
533
+ [2024-07-04 18:15:25,860][02159] Avg episode rewards: #0: 16.393, true rewards: #0: 8.393
534
+ [2024-07-04 18:15:25,862][02159] Avg episode reward: 16.393, avg true_objective: 8.393
535
+ [2024-07-04 18:15:25,896][02159] Num frames 5900...
536
+ [2024-07-04 18:15:26,024][02159] Num frames 6000...
537
+ [2024-07-04 18:15:26,152][02159] Num frames 6100...
538
+ [2024-07-04 18:15:26,281][02159] Num frames 6200...
539
+ [2024-07-04 18:15:26,408][02159] Num frames 6300...
540
+ [2024-07-04 18:15:26,533][02159] Num frames 6400...
541
+ [2024-07-04 18:15:26,659][02159] Num frames 6500...
542
+ [2024-07-04 18:15:26,786][02159] Num frames 6600...
543
+ [2024-07-04 18:15:26,879][02159] Avg episode rewards: #0: 16.161, true rewards: #0: 8.286
544
+ [2024-07-04 18:15:26,880][02159] Avg episode reward: 16.161, avg true_objective: 8.286
545
+ [2024-07-04 18:15:26,969][02159] Num frames 6700...
546
+ [2024-07-04 18:15:27,096][02159] Num frames 6800...
547
+ [2024-07-04 18:15:27,227][02159] Num frames 6900...
548
+ [2024-07-04 18:15:27,355][02159] Num frames 7000...
549
+ [2024-07-04 18:15:27,480][02159] Num frames 7100...
550
+ [2024-07-04 18:15:27,607][02159] Num frames 7200...
551
+ [2024-07-04 18:15:27,732][02159] Num frames 7300...
552
+ [2024-07-04 18:15:27,790][02159] Avg episode rewards: #0: 15.779, true rewards: #0: 8.112
553
+ [2024-07-04 18:15:27,791][02159] Avg episode reward: 15.779, avg true_objective: 8.112
554
+ [2024-07-04 18:15:27,916][02159] Num frames 7400...
555
+ [2024-07-04 18:15:28,044][02159] Num frames 7500...
556
+ [2024-07-04 18:15:28,168][02159] Num frames 7600...
557
+ [2024-07-04 18:15:28,298][02159] Num frames 7700...
558
+ [2024-07-04 18:15:28,427][02159] Num frames 7800...
559
+ [2024-07-04 18:15:28,559][02159] Num frames 7900...
560
+ [2024-07-04 18:15:28,686][02159] Num frames 8000...
561
+ [2024-07-04 18:15:28,816][02159] Num frames 8100...
562
+ [2024-07-04 18:15:28,946][02159] Num frames 8200...
563
+ [2024-07-04 18:15:29,073][02159] Num frames 8300...
564
+ [2024-07-04 18:15:29,201][02159] Avg episode rewards: #0: 16.757, true rewards: #0: 8.357
565
+ [2024-07-04 18:15:29,202][02159] Avg episode reward: 16.757, avg true_objective: 8.357
566
+ [2024-07-04 18:15:49,147][02159] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
567
+ [2024-07-04 18:23:54,057][02159] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
568
+ [2024-07-04 18:23:54,059][02159] Overriding arg 'num_workers' with value 1 passed from command line
569
+ [2024-07-04 18:23:54,059][02159] Adding new argument 'no_render'=True that is not in the saved config file!
570
+ [2024-07-04 18:23:54,061][02159] Adding new argument 'save_video'=True that is not in the saved config file!
571
+ [2024-07-04 18:23:54,062][02159] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
572
+ [2024-07-04 18:23:54,064][02159] Adding new argument 'video_name'=None that is not in the saved config file!
573
+ [2024-07-04 18:23:54,066][02159] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
574
+ [2024-07-04 18:23:54,067][02159] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
575
+ [2024-07-04 18:23:54,069][02159] Adding new argument 'push_to_hub'=True that is not in the saved config file!
576
+ [2024-07-04 18:23:54,070][02159] Adding new argument 'hf_repository'='Hamze-Hammami/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
577
+ [2024-07-04 18:23:54,071][02159] Adding new argument 'policy_index'=0 that is not in the saved config file!
578
+ [2024-07-04 18:23:54,073][02159] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
579
+ [2024-07-04 18:23:54,075][02159] Adding new argument 'train_script'=None that is not in the saved config file!
580
+ [2024-07-04 18:23:54,076][02159] Adding new argument 'enjoy_script'=None that is not in the saved config file!
581
+ [2024-07-04 18:23:54,078][02159] Using frameskip 1 and render_action_repeat=4 for evaluation
582
+ [2024-07-04 18:23:54,103][02159] RunningMeanStd input shape: (3, 72, 128)
583
+ [2024-07-04 18:23:54,105][02159] RunningMeanStd input shape: (1,)
584
+ [2024-07-04 18:23:54,117][02159] ConvEncoder: input_channels=3
585
+ [2024-07-04 18:23:54,156][02159] Conv encoder output size: 512
586
+ [2024-07-04 18:23:54,157][02159] Policy head output size: 512
587
+ [2024-07-04 18:23:54,176][02159] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
588
+ [2024-07-04 18:23:54,591][02159] Num frames 100...
589
+ [2024-07-04 18:23:54,722][02159] Num frames 200...
590
+ [2024-07-04 18:23:54,849][02159] Num frames 300...
591
+ [2024-07-04 18:23:55,017][02159] Avg episode rewards: #0: 8.900, true rewards: #0: 3.900
592
+ [2024-07-04 18:23:55,018][02159] Avg episode reward: 8.900, avg true_objective: 3.900
593
+ [2024-07-04 18:23:55,033][02159] Num frames 400...
594
+ [2024-07-04 18:23:55,163][02159] Num frames 500...
595
+ [2024-07-04 18:23:55,291][02159] Num frames 600...
596
+ [2024-07-04 18:23:55,420][02159] Num frames 700...
597
+ [2024-07-04 18:23:55,556][02159] Num frames 800...
598
+ [2024-07-04 18:23:55,619][02159] Avg episode rewards: #0: 10.530, true rewards: #0: 4.030
599
+ [2024-07-04 18:23:55,621][02159] Avg episode reward: 10.530, avg true_objective: 4.030
600
+ [2024-07-04 18:23:55,742][02159] Num frames 900...
601
+ [2024-07-04 18:23:55,873][02159] Num frames 1000...
602
+ [2024-07-04 18:23:56,002][02159] Num frames 1100...
603
+ [2024-07-04 18:23:56,175][02159] Avg episode rewards: #0: 9.300, true rewards: #0: 3.967
604
+ [2024-07-04 18:23:56,177][02159] Avg episode reward: 9.300, avg true_objective: 3.967
605
+ [2024-07-04 18:23:56,193][02159] Num frames 1200...
606
+ [2024-07-04 18:23:56,328][02159] Num frames 1300...
607
+ [2024-07-04 18:23:56,463][02159] Num frames 1400...
608
+ [2024-07-04 18:23:56,596][02159] Num frames 1500...
609
+ [2024-07-04 18:23:56,711][02159] Avg episode rewards: #0: 8.868, true rewards: #0: 3.867
610
+ [2024-07-04 18:23:56,712][02159] Avg episode reward: 8.868, avg true_objective: 3.867
611
+ [2024-07-04 18:23:56,787][02159] Num frames 1600...
612
+ [2024-07-04 18:23:56,924][02159] Num frames 1700...
613
+ [2024-07-04 18:23:57,059][02159] Num frames 1800...
614
+ [2024-07-04 18:23:57,194][02159] Num frames 1900...
615
+ [2024-07-04 18:23:57,329][02159] Num frames 2000...
616
+ [2024-07-04 18:23:57,458][02159] Avg episode rewards: #0: 8.910, true rewards: #0: 4.110
617
+ [2024-07-04 18:23:57,460][02159] Avg episode reward: 8.910, avg true_objective: 4.110
618
+ [2024-07-04 18:23:57,521][02159] Num frames 2100...
619
+ [2024-07-04 18:23:57,657][02159] Num frames 2200...
620
+ [2024-07-04 18:23:57,793][02159] Num frames 2300...
621
+ [2024-07-04 18:23:57,923][02159] Num frames 2400...
622
+ [2024-07-04 18:23:58,052][02159] Num frames 2500...
623
+ [2024-07-04 18:23:58,178][02159] Num frames 2600...
624
+ [2024-07-04 18:23:58,305][02159] Num frames 2700...
625
+ [2024-07-04 18:23:58,424][02159] Avg episode rewards: #0: 9.418, true rewards: #0: 4.585
626
+ [2024-07-04 18:23:58,426][02159] Avg episode reward: 9.418, avg true_objective: 4.585
627
+ [2024-07-04 18:23:58,489][02159] Num frames 2800...
628
+ [2024-07-04 18:23:58,616][02159] Num frames 2900...
629
+ [2024-07-04 18:23:58,743][02159] Num frames 3000...
630
+ [2024-07-04 18:23:58,879][02159] Num frames 3100...
631
+ [2024-07-04 18:23:59,008][02159] Num frames 3200...
632
+ [2024-07-04 18:23:59,139][02159] Num frames 3300...
633
+ [2024-07-04 18:23:59,266][02159] Num frames 3400...
634
+ [2024-07-04 18:23:59,393][02159] Num frames 3500...
635
+ [2024-07-04 18:23:59,452][02159] Avg episode rewards: #0: 10.576, true rewards: #0: 5.004
636
+ [2024-07-04 18:23:59,454][02159] Avg episode reward: 10.576, avg true_objective: 5.004
637
+ [2024-07-04 18:23:59,580][02159] Num frames 3600...
638
+ [2024-07-04 18:23:59,706][02159] Num frames 3700...
639
+ [2024-07-04 18:23:59,834][02159] Num frames 3800...
640
+ [2024-07-04 18:23:59,966][02159] Avg episode rewards: #0: 9.825, true rewards: #0: 4.825
641
+ [2024-07-04 18:23:59,968][02159] Avg episode reward: 9.825, avg true_objective: 4.825
642
+ [2024-07-04 18:24:00,022][02159] Num frames 3900...
643
+ [2024-07-04 18:24:00,147][02159] Num frames 4000...
644
+ [2024-07-04 18:24:00,274][02159] Num frames 4100...
645
+ [2024-07-04 18:24:00,404][02159] Num frames 4200...
646
+ [2024-07-04 18:24:00,533][02159] Num frames 4300...
647
+ [2024-07-04 18:24:00,659][02159] Num frames 4400...
648
+ [2024-07-04 18:24:00,786][02159] Num frames 4500...
649
+ [2024-07-04 18:24:00,912][02159] Num frames 4600...
650
+ [2024-07-04 18:24:01,041][02159] Num frames 4700...
651
+ [2024-07-04 18:24:01,168][02159] Num frames 4800...
652
+ [2024-07-04 18:24:01,296][02159] Num frames 4900...
653
+ [2024-07-04 18:24:01,425][02159] Num frames 5000...
654
+ [2024-07-04 18:24:01,550][02159] Num frames 5100...
655
+ [2024-07-04 18:24:01,679][02159] Num frames 5200...
656
+ [2024-07-04 18:24:01,806][02159] Num frames 5300...
657
+ [2024-07-04 18:24:01,935][02159] Num frames 5400...
658
+ [2024-07-04 18:24:02,005][02159] Avg episode rewards: #0: 13.123, true rewards: #0: 6.012
659
+ [2024-07-04 18:24:02,007][02159] Avg episode reward: 13.123, avg true_objective: 6.012
660
+ [2024-07-04 18:24:02,124][02159] Num frames 5500...
661
+ [2024-07-04 18:24:02,255][02159] Num frames 5600...
662
+ [2024-07-04 18:24:02,385][02159] Num frames 5700...
663
+ [2024-07-04 18:24:02,515][02159] Num frames 5800...
664
+ [2024-07-04 18:24:02,641][02159] Num frames 5900...
665
+ [2024-07-04 18:24:02,768][02159] Num frames 6000...
666
+ [2024-07-04 18:24:02,898][02159] Num frames 6100...
667
+ [2024-07-04 18:24:03,030][02159] Num frames 6200...
668
+ [2024-07-04 18:24:03,158][02159] Num frames 6300...
669
+ [2024-07-04 18:24:03,287][02159] Num frames 6400...
670
+ [2024-07-04 18:24:03,413][02159] Num frames 6500...
671
+ [2024-07-04 18:24:03,544][02159] Num frames 6600...
672
+ [2024-07-04 18:24:03,672][02159] Num frames 6700...
673
+ [2024-07-04 18:24:03,799][02159] Num frames 6800...
674
+ [2024-07-04 18:24:03,927][02159] Num frames 6900...
675
+ [2024-07-04 18:24:04,056][02159] Num frames 7000...
676
+ [2024-07-04 18:24:04,183][02159] Num frames 7100...
677
+ [2024-07-04 18:24:04,316][02159] Num frames 7200...
678
+ [2024-07-04 18:24:04,448][02159] Num frames 7300...
679
+ [2024-07-04 18:24:04,587][02159] Avg episode rewards: #0: 16.463, true rewards: #0: 7.363
680
+ [2024-07-04 18:24:04,588][02159] Avg episode reward: 16.463, avg true_objective: 7.363
681
+ [2024-07-04 18:24:22,135][02159] Replay video saved to /content/train_dir/default_experiment/replay.mp4!